WELLESLEY

CS 240
Foundations of Computer Systems ;2;

Virtual Memory

Process Abstraction, Part 2: Private Address Space

https://cs.wellesley.edu/~cs240/

Problems with physical addressing

Main memory

0:
1:
Physical address 2:
cPU L
4 5:
6:
7:
8:
M-1
Data

Problem 1: memory management

Main memory

Process 1
stack

Process 2 % heap What goes

Process 3 where?
code

globals

Process n

Also:

Context switches must swap out entire memory contents.
Isn't that expensive?

Problem 2: capacity

64-bit addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)

? (To scale with 64-bit address space,
you can't see it.)

1 virtual address space per process,
with many processes...

Problem 3: protection

Solution: Virtual Memory (address indirection)

8 data
Physical main memory 8
Process i Process 1 é
'_.gu virtual Physical memory
. S addresses
Process j . . .
: virtual-to-physical
o mapping | physical
. g addresses
Problem 4: sharing
Physical main memory Process n ?
. 3 virtual
Process i s addresses data
Process j Private virtual address Single physical address space
space per process. managed by OS/hardware.
Virtual Memory 5 Virtual Memory 6
Indirection nyu Tangent: indirection everywhere

(it's everywhere!)

Direct naming

N \I

n Z'l
What X
nmo.n Currently ,

X \Taps to_ - <
n

Indirect naming %E[
"X" /

X

4
'd

What if we move Thing?

1

Virtual Memory

N oo o A WN =R O

* Pointers

* Constants

* Procedural abstraction

* Domain Name Service (DNS)

* Dynamic Host Configuration Protocol (DHCP)
* Phone numbers

* 911

* Call centers

* Snail mail forwarding

“Any problem in computer science can be solved by adding another level of indirection.”
—David Wheéeler, inventor of the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other peopvlet'smistakes.'g'
irtua emory

Virtual addressing and address translation

Memory Management Unit
translates virtual address to physical address
Main memory

0:
CPU Chip 1:
Virtual address Physical address 2:
(VA) (PA) 3
CPU > MMU ————— &
4100 5:
6:
7:
8:
M-1:
Data

Physical addresses are invisible to programs. o

Page_based mapping fixed-size, aligned pages

page size = power of two

Virtual
Address Space
O [virtuai Physical
P‘Lge Address Space
0 -
Virtual ngsmal
Page a:)ge
1
Virtual e
Page Page
> 1
Virtual
Pagge Map virtual pages see
onto physical pages. Physical
(X X Page
_ 2r-1
Virtual 2=
Page
-1 [2-1 Some virtual pages do not fit!

Where are they stored?

Virtual Memory 10

Cannot fit all virtual pages! Where are the rest stored?

Virtual Memory virtual address space
Address Space usually much larger than
0 [virtual physical address space
Page

0

Virtual

Page
1

Virtual

Page
2

Virtual

Page
3

1. On disk if used

t
-1 * 2. Nowhere if not (yet?) used

Virtual Memory 11

Not drawn to scale

Virtual memory: cache for disk?

SRAM DRAM
(~4 MB 1 (~8 GB) ~500 GB
L1
I-cache
L2 Main D k
32 KB unified |S
cache Memory
CPU | Re L1
¢ D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles ; . .
Latency: 3 cycles 14 cycles 100 cycles millions solid-state "flash
or
¢ spinning
magnetic platter.
Cache miss penalty
(latency): 33x
Memory miss penalty
Example system (latency): 10,000x

Design for a slow disk: exploit locality

Virtual Memory
Address Space

0 Virtual
Page
0
Virtual
Page
1
Virtual
Page
2
Virtual
Page
3

on disk

ﬁ
2"-1 =

Physical Memory

Address Space
0

Physical
Page
0
Physical
Page
1

Physical
Page
om_1 2P -1

Virtual Memory 13

Design for a slow disk: exploit locality

Virtual Memory Page size'-’

Address Space
0 [Virtual Physical Memory
Pe:)ge \ Address Space
0 -
il Physical
Page =y Pa:)ge
1
Virtual Associativity? Phvsical
Page Page
5 1
Virtual
Page (X N]
3
on diSk Physical
(X X Page
= om_1 2°-1
* Replacement
-1 B2 policy? Write

policy? Memory 14

Address translation

0:

CPU Chip 1:
Virtual address Physical address 2:

(VA) (PA) 3:

CPU MMU ————— &
4100 5:

6:

7:

8:

M-1

Main memory

Data

Virtual Memory 15

Page table

array of page table entries (PTEs)
mapping virtual page to where it is stored

Physical pages
(Physical memory)

; VP 1 PPO
Physical Page Number
Valid or disk address VP 2
1 «— VP 7
1 —
0 A VP 4 PP 3
1 ~~
0 null N
0 e /\
PTE7 | 1 o« . i Swap space
page table .. . (0K
A .. W vP3
Memory resident, \\\
managed by HW (MMU), OS 3 VP 6

How many page tables are in the system? Virtual Memory 16

Address translation with a page table Page hit: virtual page is in memory physical pages

(Physical memory)

Virtual Page Number ‘

P I] . VP 1 PPO
bazgietgil:fer Virtual address (VA) Physical Page Number
(PTBR) Virtual page number (VPN) | Virtual page offset (VPO) Valid or disk address VP 2
Base address PTEO | O null /
of current process's Page table 1 |PPO «— VP 7
page table Valid Physical page number (PPN) | 1 |PP1 — VP 4 pp
0 |ondisk 3
N 1|pPpP3 ~~
0 null N
0 [ondisk &
PTE7 | 1 |PP2 o« .. Swap space
Virtual page mapped RN S Di
— ~ N isk
to physical page? page table AN A% ()
= i oY vp3
yes - page h It Physical page number (PPN) | Physical page offset (PPO) AN N
A VP 6
Physical address (PA)
Virtual Memory 17 Virtual Memory 18

Page fault:

—{ Virtual Page Number ‘

Physical pages Page fault: exceptional control flow

(Physical memory)

Process accessed virtual address in a page that is not in physical memory.
Physical Page Number VPl PPo
volid___or disk address VP2 | PP1 Process
PTEO | O null
1|PPO V7 PP2 User Code OS exception handler
1|pPP1
0 [on disk VP4 | pP3
1|PP3 exception: page fault
0 null movl Vv:::: -------------------- >
0 | On disk \"‘\-_\ !.oad page
PTE7 | 1 |PP2 Swap space return ~~"“~_~~~~~ into memory
page table (Disk)
VP 3 M
VP 6 Returns to faulting instruction:

movl is executed again!

Virtual Memory 19 Virtual Memory 20

Page fault: 1. page not in memory

Physical pages

Page fault: 2. 05 evicts another page.

n

"Page out

Physical pages

—{ Virtual Page Number ‘ W (Physical memory) —{ Virtual Page Number ‘ (Physical memory)
PPO PPO
Physical Page Number VPl Physical Page Number
Valid or disk address VP 2 Valid or disk address VP 2
PTEO | O null / PTEO | O null
1]prPo «— VP 7 0 [ondisk « VP 7
1|PP1 — 1]pPrP1 o—
0 |ondisk e VP4 pP3 0 |Ondisk & '\ VP4 PP3
1|PP3 =<7 1|PP3 N,
0 null N 0 null Sy
0[ondisk & /" 0[ondisk & N
PTE7 | 1 |PP2 Lt _ Y Swap space PTE7 | 1 IS o« _ | \:‘\ Swap space
page ta ble \\\ AN . (Dlsk) page ta ble \\\ \\\\ AN . (DISk)
o N VP 3 Y N VP 3
What now? o vpe Dy vee
OS handles fault y vp1
Virtual Memory 21 Virtual Memory 22
"Page in"
Page fault: 3. 0s loads needed page. Terminology

—{ Virtual Page Number ‘

Physical pages
(Physical memory)

PPO
Physical Page Number Ve
Valid or disk address VP 2
PTEO | O null
1 | On disk Q VP 7
1[pp1 o~ vpa
1[pPPo -~ . PP 3
1[PP3 ~
0 null AN
0 [On disk [3 AN
PTE7 | 1 |PP2 . _ 8 Swap space
page table .\ (Disk)
. \\\§\~
Finally: NN
. . . s VP 6
Re-execute faulting instruction. \
Page hit! ¥ VP1

Virtual Memory 23

context switch

Switch control between processes on the same CPU.

page in

Move page of virtual memory from disk to physical memory.

page out

Move page of virtual memory from physical memory to disk.

thrash

Total working set size of processes is larger than physical memory.
Most time is spent paging in and out instead of doing useful work.

Virtual Memory 24

Address translation: page hit

CPU Chip P?EA
3 PTE

CcPU > MMU [5) Caehe/

oA Memory

Data

1) Processor sends virtual address to MMU (memory management unit)
2-3) MMU fetches PTE from page table in cache/memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Virtual Memory 25

Address Translation: Page Fault

Exception

jmm———————— - Page fault handler
! 0
1
1
. | |

CPU Chip o 1 F% Victim page

CPU VA MMU ke g Cache/ Disk
o Memory New page

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Virtual Memory

26

How fast is translation?

How many physical memory accesses are required to complete
one virtual memory access?

Translation Lookaside Buffer (TLB)

Small hardware cache in MMU just for page table entries
e.g., 128 or 256 entries

Much faster than a page table lookup in memory.

In the running for "un/classiest name of a thing in CS"

Virtual Memory 27

TLB hit

CPU Chip LB
o PTE
VPN e
(1]
VA PA
CPU MMU o Cache/
Memory
Data
o

A TLB hit eliminates a memory access

Virtual Memory

28

TLB miss

CPU Chi
. TLB o
o PTE
VPN
CcPU . MMU PTEA Cache/
3 Memory
Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Does a TLB miss require disk access?

Virtual Memory 29

Memory system example (small)

Addressing
14-bit virtual addresses
12-bit physical address
Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

rrrrrrr

VPN VPO

Virtual Page Number

PPN PPO

Physical Page Number Physical Page Offset

Simulate accessing these virtual addresses on
the system: 0x03D4, O0xOB8F, 0x0020

Virtual Memory

30

Memory system example: page table

Only showing first 16 entries (out of 256 = 28)

virtual page#___ TLBindex__ TLBtag__ TLBHit? __ Page Fault? __ physical page #:
VPN PPN Valid VPN PPN Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C — 0
05 16 1 0D 2D 1
06 = 0 OE 11 1
07 = 0 OF 0D 1

What about a real address space? Read more in the book...

Virtual Memory 31

Memory system example: TLB

16 entries
4-way associative

TLB tag TLB index
13 12 11 10 9 8 7 6 5 4 3 2 1 0

rrrrrrr T

<+«— virtual page number ——— <+ virtual page offset —

TLB ignores page offset. Why?

virtual page#t TLBindex___ TLBtag___ TLBHit? __ Page Fault? __ physical page#:
Set Tag PPN Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid

0 03 - 0 09 oD 1 00 - 0 07 02 1

1 03 2D 1 02 - 0 04 - 0 0A - 0

2 02 - 0 08 - 0 06 - 0 03 - 0

3 07 - 0 03 oD 1 0A 34 1 02 - 0

Virtual Memory

32

Memory system example: cache

16 lines

cache tag ———><+—— cache index —>cache offset

11 10 9 8 7 6 5 4 3 2 1 0

R N N Y B

<— physical page number —<+— physical page offset —

4-byte block size

Physically addressed
Direct mapped

cache offset__ cacheindex___ cachetag__ Hit? __ Byte:

ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - = = - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 = — - =

Virtual Memory 33

Virtual memory benefits:
Simple address space allocation

Process needs private contiguous address space.

Storage of virtual pages in physical pages is fully associative.

Virtual Address Spaces Physical Address Space (DRAM)
(] 0
Process 1:
VP1 —
VP2 PP 2
vl 1
PP 6
P 2 °
rocess 2: P8
et PP9
VP2
il 1 o

Virtual Memory 34

Virtual memory benefits:
Simple cached access to storage > memory

Good locality, or least "small" working set = mostly page hits

N\ N

All necessary
page table entries
fitin TLB

Working set pages
fit in physical memory

If combined working set > physical memory:
Thrashing: Performance meltdown. CPU always waiting or paging.

Full indirection quote:

“Every problem in computer science can be solved by adding another
level of indirection, but that usually will create another problem.”

Virtual Memory 35

Virtual memory benefits:
Protection:

All accesses go through translation.
Impossible to access physical memory not mapped in virtual address space.

Sharing:

Map virtual pages in separate address spaces to same physical page (rrs).

Virtual Address Spaces Physical Address Space (DRAM)
0 0
Process 1:
VP 1 —
VP2 PP 2
wal— 1
PP G (e.g., execute-only
library code: libc)
) 0
Process 2: PP 8
VP 1
VP 2
N-1 :I M-1 Virtual Memory 36

Virtual memory benefits:
Memory permissions

MMU checks on every access.

/ Exception if not allowed.

permission bits Physical
Process 1: Valid READ WRITE EXEC Physical Page Num Address Space
VPO: | Yes No No Yes PP 6
VP1:| Yes No No Yes PP 4
VP 2:| Yes Yes Yes No PP 2 2
Page Table PP 4
permission bits PP'6
Process 2: Valid READ WRITE EXEC Physical Page Num PP
VPO: | Yes Yes Yes No PP9 PP 9
VP 1: Yes No No Yes PP 6
VP2:| Yes Yes No No PP 11 PP 11
Page Table

How would you set permissions for the stack, heap, global variables, literals, cocvi‘en?‘a‘ Vemory 37

Summary: virtual memory

Programmer’s view of virtual memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System view of virtual memory

Uses memory efficiently (due to locality) by caching
virtual memory pages
Simplifies memory management and sharing
Simplifies protection -- easy to interpose and check
permissions
More goodies:

* Memory-mapped files

* Cheap fork() with copy-on-write pages (COW)

Virtual Memory

38

Summary: memory hierarchy

L1/L2/L3 Cache: Pure Hardware

Purely an optimization
"Invisible" to program and OS, no direct control
Programmer cannot control caching, can write code that fits well

Virtual Memory: Software-Hardware Co-design

Supports processes, memory management
Operating System (software) manages the mapping
Allocates physical memory
Maintains page tables, permissions, metadata
Handles exceptions
Memory Management Unit (hardware) does translation and checks
Translates virtual addresses via page tables, enforces permissions
TLB caches the mapping
Programmer cannot control mapping, can control sharing/protection via OS

Virtual Memory 39

