CS 240 Arch Assignment [103 points] ID Number:

About how many hours did you spend actively working on this assignment?

Q1 Universal Muxification of Gates [10 points] Time spent on Q1:

1.1 NOT A (one 221 mux) [1] | 1.2.AAND B 1.3 A NOR B (two 2:1 muxes) [2]
(one 2:1 mux) [1]

1.4 A XOR B (two 2:1 muxes) [Independent] [3] 1.5 A XOR B (one 2:4 decoder and one 2:1 mux)
[Independent] [3]

Q2 vALUe Judgement [28 points]

Draw circuits on next page, text answers (except 2.1b) go here. Time spent on Q2:

2.1 Condition Flags [5]
(draw circuits for (a) and give explanation for (b)
on the next page)

2.2 Result of the ALU when Invert A =1,
Negate B = 1, and Operation ID = 10. [4]

(a) [2] Result =

(b) [2] Derivation of Result:

2.3 (a) [3 points] A, B with correct result
(multiple answers shown; you only needed one)

A B A-B sign(A-B) | Is A<B?

positive positive

negative negative

different different
signs signs

2.3. (b) [2 points] A, B with incorrect result

A B A-B | sign(A-B) | IsA<B?

positive

negative

2.3. (c) [1 point] Key reason(s) why 2.3(b) examples
are incorrect.

2.3 (d) [3 points] Draw your circuit for the Less-Than
Flag on the next page.

2.3. (e) [1 point] Control lines for Less-Than Flag:
Invert A= Negate B = Operation =

2.3. (f) [2 points] Explain why your Less-Than Flag
circuit on the next page gives the correct result.

2.4. (a) [3 points] Draw your Equals Flag design on
the next page.

2.4. (b) [1 point] Explain why your Equals Flag
circuit correctly calculates A == B.

2.4. (c) [1 points] Control lines for the Equals Flag
Invert A= Negate B = Operation =

2.1(a) Condition Flag circuits;, 2.1(b) explanation why Overflow Flag circuit is correct; 2.3(d) Less-Than Flag
circuit; 2.4(a) Equals Flag circuit. Label all outputs clearly.

Invert A Negate B
y
=
Eﬂ 0
Mux [Result,
1
* I
1 _—
Al -5‘ — T~
T 0
MUX [Result,
1
BRI nen S pn B
1 _—
p
AZ 0 — \
1 0
Mux [T Result,
1
Sl at iy E
1 |_—
A; 0 S ~——
T . 0
MUX [Result;

| 2 —

&
1+

2.1(b) Explain why the Overflow Flag circuit is correct

Q3. Flop-Flip-Flopping [10 points]

Time spent on Q3:

3.1 Waveform diagrams (Timing diagrams) 3.2. Cycles
t=0 t=1 t=2 t=3 t=a t=5 t=6 =7 t=8 =9 t=10 Completed| Q, | Q| Q
i ! ! ! ! ! ! ! ! ! [O (initial) [O |O | O
Clock 1
Q! o —
T
Q: b T
Q. L
: ; ! ; ; ; ! : . . ; 6
3.3. Explanation 7
8
9
10
Q4 Some Loopy Programs [22 points] Time spent on Q4:
4.1 [8 points] Execution Table for program P1
PC Instruction State Changes
4.2 [3 points] Final contents R2: R3: R4:

4.3 [4 points] C statements equivalent to P1:

// Alice starts with these C statements for program P1

int RO = 0;

int R1 1;

int R2 = RO+R1;

// Below, fill 1in the remaining C statements to complete program P1:

4.4 (a) Execute this program P2, assuming R2 holds 5 and R3 holds 4. Below, indicate the final register values
when the code reaches HALT. (Do not show the step-by-step execution)

Ox0: AND R2, R2, R4

Ox2: AND R3, R3, R5

Ox4: BEQ R5, RO, 3

Ox6: SUB R5, R1, R5

Ox8: ADD R4, R4, R4

OxA: JMP 2

OxC: HALT # Stops execution.

Final register contents after R2: R3: R4. R5:)
executing P2 [3 points]

4.4(b) [2 points] C line for P2
Single line of C code equivalent to the HW ISA code for P2, assuming variables R2 and R3 can hold any
integer values. Use only basic C operations (no conditionals, loops, or function calls).

R4 =

4.3(b) [2 points] Explanation why C line in 4.4(b) calculates the same result as program P2

Q5 Taking Control [9 points]

Control Unit Truth Table

Time spent on Q5:

Instruction
Name

Opcodey;
(4 bits)

Reg Write
(1 bit)

ALU Op[g:o]
(4 bits)

Mem Store
(1 bit)

Mem Load
(1 bit)

Branch
(1 bit)

Jump
(1 bit)
7.2 [1]

LW

0000

0010

SW

ADD

SUB

AND

OR

BEQ

NAND
6.2(b) [3]

JMP
7.3[3]

Q6 Instruction Not Missing [12 points]

6.1 [4 points]

6.1(a) [1 point] Give a definition of ~X in terms of X and signed two’s complement arithmetic:

~X=

Time spent on Q6:

6.1(b) [3 points] Based on the previous subpart, the instruction NOT Rs,Rd can be emulated by running the
following instructions instead:

16-bit encoding

Assembly

Meaning

Opcode
[15:12]

Rs
[11:8]

Rt
[7:4]

6.2(a) [3 points]
NAND Rs,Rt,Rd

R[d] — ~(Rs & Rt)

6.3 [2 points]
NOT Rs,Rd

Q7 Jumping into the Unknown [12 points] Time spent on Q7:

7.1(a) [8 points]. Below, add a Jump output wire from the Control Unit and modify logic to use it to
implement JMP instruction. Note: if you use the new red write split off from Inst, be sure to label
which range ([?, ?]) of bits you use.

[~
+ 1
;Shiﬂ left by !

Mem
Branch
[15:12] Control }
Unit ALU
| | Reg Write

Control
Write Enable

)
o2
Q
<
&

[11:8] Mem Store
Instruction Read Addr 1 Read 16 m
Write Enable
RE\gl(ljemorv Inst{\16 |[7:4] Read Addr 2 Data 1 —| Address
Address i i
N Register File Data Memory
[3:0] 0 Write Addr Read 16
Data 2 1 Write Read
N;lf’ Write Data 1 —| Data Data
- 1 - 1
< Sign extend 6 l

7.2 [1 point] For this part, fill out the Jump column in the Control Unit Truth Table in Q5.

7.3 [3 points] For this part, fill out the JMP row in the Control Unit Truth Table in Q5. When the bits
in a cell don’t matter (they can be anything), you must explicitly write this!

