
CS 240 Arch Assignment [103 points] ID Number:

About how many hours did you spend actively working on this assignment? _________

Q1 Universal Muxification of Gates [10 points] Time spent on Q1: ___________

1.1 NOT A (one 2:1 mux) [1]

1.2. A AND B
(one 2:1 mux) [1]

1.3 A NOR B (two 2:1 muxes) [2]

1.4 A XOR B (two 2:1 muxes) [Independent] [3]

1.5 A XOR B (one 2:4 decoder and one 2:1 mux)
[Independent] [3]

`

Q2 vALUe Judgement [28 points]
Draw circuits on next page, text answers (except 2.1b) go here. Time spent on Q2: ___________

2.1 Condition Flags [5]
(draw circuits for (a) and give explanation for (b)
on the next page)

2.2 Result of the ALU when Invert A = 1,
Negate B = 1, and Operation ID = 10. [4]

(a) [2] Result =

(b) [2] Derivation of Result:

2.3 (a) [3 points] A, B with correct result
(multiple answers shown; you only needed one)

A B A - B sign(A-B) Is A < B?

positive

 positive

negative

negative

different
signs

different
signs

2.3. (b) [2 points] A, B with incorrect result

A B A - B sign(A-B) Is A < B?

positive

negative

2.3. (c) [1 point] Key reason(s) why 2.3(b) examples
are incorrect.

2.3 (d) [3 points] Draw your circuit for the Less-Than
Flag on the next page.

2.3. (e) [1 point] Control lines for Less-Than Flag:

Invert A = Negate B = Operation =

2.3. (f) [2 points] Explain why your Less-Than Flag
circuit on the next page gives the correct result.

2.4. (a) [3 points] Draw your Equals Flag design on
the next page.

2.4. (b) [1 point] Explain why your Equals Flag
circuit correctly calculates A == B.

2.4. (c) [1 points] Control lines for the Equals Flag

Invert A = Negate B = Operation =

2.1(a) Condition Flag circuits;, 2.1(b) explanation why Overflow Flag circuit is correct; 2.3(d) Less-Than Flag
circuit; 2.4(a) Equals Flag circuit. Label all outputs clearly.

2.1(b) Explain why the Overflow Flag circuit is correct

Q3. Flop-Flip-Flopping [10 points] Time spent on Q3: ___________
3.1 Waveform diagrams (Timing diagrams)

3.3. Explanation

 3.2. Cycles
Completed

Q2

Q1

Q0

0 (initial) 0 0 0

1
2

3

4

5

6

7

8

9
10

Q4 Some Loopy Programs [22 points] Time spent on Q4: ___________

4.1 [8 points] Execution Table for program P1

PC Instruction State Changes

4.2 [3 points] Final contents R2: R3: R4:

4.4 (a) Execute this program P2, assuming R2 holds 5 and R3 holds 4. Below, indicate the final register values
when the code reaches HALT. (Do not show the step-by-step execution)

0x0: AND R2, R2, R4
0x2: AND R3, R3, R5
0x4: BEQ R5, R0, 3
0x6: SUB R5, R1, R5
0x8: ADD R4, R4, R4
0xA: JMP 2
0xC: HALT # Stops execution.

Final register contents after
executing P2 [3 points]

R2: R3: R4: R5:)

4.4(b) [2 points] C line for P2
Single line of C code equivalent to the HW ISA code for P2, assuming variables R2 and R3 can hold any
integer values. Use only basic C operations (no conditionals, loops, or function calls).

 R4 =

4.3(b) [2 points] Explanation why C line in 4.4(b) calculates the same result as program P2

4.3 [4 points] C statements equivalent to P1:
// Alice starts with these C statements for program P1
int R0 = 0;
int R1 = 1;
int R2 = R0+R1;
// Below, fill in the remaining C statements to complete program P1:

Q5 Taking Control [9 points] Time spent on Q5: ___________

Control Unit Truth Table

Instruction
Name

Opcode[3:0]

(4 bits)
Reg Write

(1 bit)
ALU Op[3:0]

(4 bits)
Mem Store

(1 bit)
Mem Load

(1 bit)
Branch
(1 bit)

Jump
(1 bit)

7.2 [1]

LW 0000 1 0010 0 1 0

SW

ADD

SUB

AND

OR

BEQ

NAND
6.2(b) [3]

JMP
7.3 [3]

Q6 Instruction Not Missing [12 points] Time spent on Q6: ___________

6.1 [4 points]

6.1(a) [1 point] Give a definition of ~X in terms of X and signed two’s complement arithmetic:

 ~X =

6.1(b) [3 points] Based on the previous subpart, the instruction NOT Rs,Rd can be emulated by running the
following instructions instead:

 ------------------- 16-bit encoding ------------------

Assembly Meaning Opcode
[15:12]

Rs
[11:8]

Rt
[7:4]

Rd
[3:0]

6.2(a) [3 points]
 NAND Rs,Rt,Rd

R[d] ← ~(Rs & Rt)

6.3 [2 points]
 NOT Rs,Rd

R[d] ← ~Rs

Q7 Jumping into the Unknown [12 points] Time spent on Q7: ___________

7.1(a) [8 points]. Below, add a Jump output wire from the Control Unit and modify logic to use it to
implement JMP instruction. Note: if you use the new red write split off from Inst, be sure to label
which range ([?, ?]) of bits you use.

7.2 [1 point] For this part, fill out the Jump column in the Control Unit Truth Table in Q5.

7.3 [3 points] For this part, fill out the JMP row in the Control Unit Truth Table in Q5. When the bits
in a cell don’t matter (they can be anything), you must explicitly write this!

