
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Representing Data with Bits

bits, bytes, numbers, and notation

Data as Bits 1

positional number representation

Base determines:
Maximum digit (base – 1).  Minimum digit is 0.
Weight of each position.

Each position holds a digit.
Represented value = sum of all position values

position value = digit value × baseposition

Data as Bits 2

2  4  0
100 10  1
102  101  100

2  1  0

= 2 × 102 + 4 × 101 + 0 × 100

position
weight

base = 10 (decimal)

binary = base 2

When ambiguous, subscript with base:
10110 Dalmatians  (movie)

1012-Second Rule  (folk wisdom for food safety)

Data as Bits 3

1  0  1  1
8  4  2  1
23  22  21  20

3  2  1  0

= 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

position
weight

irony

Binary digits are called bits: 0, 1

base = 2 (binary)

Powers of 2:
memorize up to ≥ 212 (in base ten)

Data as Bits 4

Power: 2? Decimal value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256

Power: 2? Decimal value
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536



Shifting binary numbers
 

Data as Bits 5

110112 = 2710

• What is 1101102?

• What is 1101112?

• What is 11012?

Converting binary to decimal
1010112 = ?10

Start with output10 = 0
Right to left(traditional algorithm) 

Start with smallest power 2 = 20. = 1
If corresponding bit is 1, add power of 2 to output10

Repeat until power of two for leftmost 1 in input2 is found

Right to left (better algorithm)
Start with leftmost 1 bit in input2 and output10 = 1
For every 0, double output10

For every 1, double output10  and add 1. 

Data as Bits 6

Converting binary to decimal

Data as Bits 7

1101012 => ??10

101101112 => ??10

Converting decimal to binary 
1910 = ?2

Start with output2 = the empty string of binary digits
Left to right (traditional algorithm) 

Find the largest power of 210 that is ≤ input10.
Subtract it from input10.
Add it to output2.
Repeat with until input10 is 0.

Right to left (better algorithm)
Divide input10 by 210.
Prepend the remainder as a bit on the left end of output2.
Repeat until input10 is 0.

Data as Bits 8



Converting decimal to binary 

Data as Bits 9

ex
4110 => ??2

12310 => ??2

binary arithmetic
1102 + 10112 = ?2  11012 – 10112 = ?2

10010112 × 210 = ?2

Data as Bits 11

ex

conversion and arithmetic
1910 = ?2       10012 = ?10

24010 = ?2       110100112 = ?10

1012 + 10112 = ?2    10010112 × 210 = ?2

Data as Bits 12

ex byte = 8 bits
Smallest unit of data
used by a typical modern computer

Binary:  000000002  --  111111112

Decimal:  00010 --  25510
Hexadecimal (Hex):  0016 --  FF16

Programmer’s hex notation (C, etc.):
              0xB4 = B416
Stands for the following in binary:
      0b10110100 = 101101002

Octal (base 8) also useful.
Data as Bits 14

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al
Binary

4 bits is a nibble (or nibble)

a.k.a. octet

Byte = 2 hex digits!



char: representing characters
A C-style string is represented by a series of bytes (chars).

— One-byte ASCII codes for each character.
— ASCII = American Standard Code for Information Interchange

Data as Bits 16

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 x
41 ) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [ 107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

word |wərd|, n.
Natural unit of data used by processor.

Fixed size (e.g. 32 bits, 64 bits)
Defined by ISA: Instruction Set Architecture

machine instruction operands
word size = register size = address size

Data as Bits 17

Java/C int = 4 bytes: 11,501,584 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6  5  4  3  2  1  0

0  0  0  0  0  0 0  0  1  0  1  0  1  1  1  1  1  0  0  0  0  0  0 0 0 0  1  0  0  0  0  0

MSB: most significant bit LSB: least significant bit

fixed-size data representations

                   (size in bytes)
Java Data Type          C Data Type         [word = 32 bits]  [word = 64 bits]

boolean  1 1
byte char 1 1
char  2 2
short short int 2 2
int int 4 4
float float 4 4
 long int 4 8
double double 8 8
long long long 8 8
 long double 8 16

Data as Bits 18

Depends on word size!

bitwise operators
Bitwise operators on fixed-width bit vectors.
 AND &      OR | XOR ^ NOT ~

Laws of Boolean algebra apply bitwise.
e.g., DeMorgan’s Law:  ~(A | B) = ~A & ~B

Data as Bits 19

01101001
& 01010101

01000001

01101001
| 01010101

01101001
^ 01010101 ~ 01010101

01010101
^ 01010101

exbit =  Boolean
0 =  false
1  =  true



bitwise operators in C
& | ^ ~ apply to any integral data type

 long,  int,  short,  char, unsigned

Examples (char)
~0x41 = 

~0x00 = 

0x69 & 0x55 = 

0x69 | 0x55 = 

Many bit-twiddling puzzles in upcoming assignment
Data as Bits 20

ex Representation Example 1:
Sets as Bit Vectors
Representation: n-bit vector gives subset of {0, …, n–1}.
 ai = 1  ≡  i  Î A

 a = 0b01101001  A = { 0, 3, 5, 6 }
 76543210

 b = 0b01010101  B = { 0, 2, 4, 6 }
 76543210

Bitwise Operations  Set Operations
a & b = 0b01000001 {0, 6}  Intersection
a | b = 0b01111101 {0, 2, 3, 4, 5, 6} Union
a ^ b = 0b00111100 {2, 3, 4, 5}  Symmetric difference
 ~ b = 0b10101010 {1, 3, 5, 7}  Complement

Data as Bits 21

ex

logical operations in C

&&     ||     ! apply to any "integral" data type
 long,  int,  short,  char, unsigned

0 is false  nonzero is true  result always 0 or 1

early termination    a.k.a.   short-circuit evaluation

Examples (char)
 !0x41 =
 !0x00 =
!!0x41 =

0x69 && 0x55 =
0x69 || 0x55 =

Data as Bits 22

ex Representation Example 2:
Playing Cards 
52 cards in 4 suits

How do we encode suits, face cards?

What operations should be easy to implement?
Get and compare rank
Get and compare suit

Data as Bits 23



Two possible representations

52 cards – 52 bits with bit corresponding to card set to 1

“One-hot” encoding
Hard to compare values and suits independently
Not space efficient

4 bits for suit, 13 bits for card value – 17 bits with two set to 
1

Pair of one-hot encoded values
 Easier to compare suits and values independently
 Smaller, but still not space efficient

Data as Bits 24

52 bits in 2 x 32-bit words

Two better representations

Binary encoding of all 52 cards – only 6 bits needed

Number cards uniquely from 0
Smaller than one-hot encodings.
Hard to compare value and suit

Binary encoding of suit (2 bits) and value (4 bits) separately

Number each suit uniquely
Number each value uniquely
Still small
Easy suit, value comparisons

Data as Bits 25

low-order 6 bits of a byte

suit value

mask: a bit vector that, when bitwise 
ANDed with another bit vector v, turns 
all but the bits of interest in v to 0

Compare Card Suits

char hand[5];       // represents a 5-card hand
...
if ( sameSuit(hand[0], hand[1]) ) { ... }

Data as Bits 26

#define SUIT_MASK 0x30

int sameSuit(char card1, char card2) {
  return !((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));

  //same as (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

0 0 1 1 0 0 0 0

suit value

mask: a bit vector that, when bitwise 
ANDed with another bit vector v, turns 
all but the bits of interest in v to 0

Compare Card Values

char hand[5];       // represents a 5-card hand
...
if ( greaterValue(hand[0], hand[1]) ) { ... }

Data as Bits 27

#define VALUE_MASK

int greaterValue(char card1, char card2) {

}

suit value

ex



Bit shifting

Data as Bits 28

1 0 0 1 1 0 0 1

x << 2 1 0 0 1 1 0 0 1 0 0
fill with zeroes on right

x

logical shift left 2

0 0 1 0 0 1 1 0 0 1
lose bits on right

1 0 0 1 1 0 0 1

x >> 2

x

lose bits on left

logical shift right 2

1 1 1 0 0 1 1 0 0 1arithmetic shift right 2

fill with zeroes on left

fill with copies of MSB on left
x >> 2

Shift gotchas
Logical or arithmetic shift right: how do we tell?
C: compiler chooses

Usually based on type: rain check!
Java: >> is arithmetic, >>> is logical

Shift an n-bit type by at least 0 and no more than n-1.
C: other shift distances are undefined.

anything could happen
Java: shift distance is used modulo number of bits in shifted type

Given  int x:    x << 34 == x << 2

Data as Bits 29

!!!

Shift and mask: extract a bit field
Write a C function that
extracts the 2nd most significant byte
from its 32-bit integer argument.

Example behavior:

Data as Bits 30

ex

Desired bits in least significant byte.All other bits are zero.

0b 01100001 01100010 01100011 01100100 

0b 00000000 00000000 00000000 01100010

argument:

expected result:

int get2ndMSB(int x) {


