WELLESLEY
CS 240

Foundations of Computer Systems

Representing Data with Bits

bits, bytes, numbers, and notation

https://cs.wellesley.edu/~cs240/ Data as Bits 1

positional number representation

base = 10 (decimal)

2 4 0

100 10 14— i
weight

102 100 1

2 1 0 — position

Base determines:
Maximum digit (base — 1). Minimum digit is 0.
Weight of each position.

Each position holds a digit.

Represented value = sum of all position values
position value = digit value x basePosition

=2x10%+4 x10'+0x 100

Data as Bits

2

bina ry = base 2 Binary digits are called bits: 0, 1

base = 2 (binary)

1 0 1 1

8 4 2 1+ 1
53 52 51 20 > weight
3 2 1 0 «— position

=1x23+0x22+1x21+1x20

When ambiguous, subscript with base:

101,, Dalmatians (movie)

101,-Second Rule (folk wisdom for food safety)

Data as Bits

Powers of 2:
memorize up to = 212 (in base ten)

Power: 27 | Decimal value Power: 27 | Decimal value

0 1 9 512

1 2 10 1024

2 4 11 2048

3 8 12 4096

4 16 13 8192

5 32 14 16384

6 64 15 32768

7 128 16 65536

8 256

Data as Bits

4

Shifting binary numbers
11011, = 274,

* Whatis 110110,?
* Whatis 110111,7?

* Whatis 1101,?

Converting binary to decimal

101011, = 7?4,
Start with output;,=0
Right to left(traditional algorithm)
Start with smallest power 2 =2%=1
If corresponding bit is 1, add power of 2 to output;,
Repeat until power of two for leftmost 1 in input,is found
Right to left (better algorithm)
Start with leftmost 1 bit in input, and output;;=1

For every 0, double output;,
For every 1, double output;, and add 1.

Converting binary to decimal

1101012 => ??10

10110111, => 22,

Converting decimal to binary

1950=7,
Start with output, = the empty string of binary digits
Left to right (traditional algorithm)
Find the largest power of 2,, that is < input .
Subtract it from input;,.
Add it to output,.
Repeat with until input;, is 0.
Right to left (better algorithm)
Divide input;, by 2.
Prepend the remainder as a bit on the left end of output,.
Repeat until input,, is 0.

Converting decimal to binary

4110 => 7?2

12310 => 7?2

Data as Bits 9

binary arithmetic

110, + 1011, = 2,

10010112 X 210 = ?2

1101,-1011,=72,

Data as Bits 11

conversion and arithmetic

1910 = ?2 10012 = ?10

240,,=?, 11010011, = ?,,

101, + 1011, = 2,

1001011, x 2;5= ?,

Data as Bits 12

' byte = 8 bits
a.k.a. octet

Smallest unit of data
used by a typical modern computer

Binary: 00000000, -- 11111111,
Decimal: 000,,-- 255,
Hexadecimal (Hex): 00, -- FF¢

Byte = 2 hex digits!

Programmer’s hex notation (C, etc.):

0xB4 = B4,
Stands for the following in binary:
0b10110100 = 10110100,

Octal (base 8) also useful.

R |
4 bits is a nibble (or nibble)
S
N oe"'\((@%\‘\%ﬂ
0 | 0 | 0000
1] 1] 0001
2 | 2 | 0010
3 |3 | 0011
4 | 4 | 0100
55| 0101
6 | 6 | 0110
7 | 7| 0111
8 | 8 | 1000
9 | 9| 1001
A |10] 1010
B |11] 1011
C |12] 1100
D |13] 1101
E |14 | 1110
F |15] 1111

Data as Bits 14

char: representing characters

A C-style string is represented by a series of bytes (chars).
— One-byte ASCII codes for each character.

— ASCIl = American Standard Code for Information Interchange

32 space | | 48 ol |e4 @] |80 P 96 ' 112 p
33 ! 49 1| |65 Al |81 al |97 a 113 q
34 " 50 2 66 B| |82 R 98 b 114 r
35 # 51 3|67 c| |83 S 99 c 115 s
36 $ 52 4| |68 D| |84 T 100 d 116 t
37 % 53 5| |69 E| |85 U 101 e 117 u
38 & 54 6| |70 F| | 86 \Y 102 f 118 v
39 ’ 55 71171 G| |87 w]||103 g 119 w
40 (56 8|72 H||s8 X 104 h 120 X
41) 57 9| |73 | 89 Y 105 I 121 y
42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 ; 75 K| |91 [107 k 123 {
a4 , 60 <| |76 L] |92 \ 108 I 124 |
45 - 61 =177 ™| |93 1 109 m 125 }
46 . 62 >| 178 N| |94 A 110 n 126 ~
47 / 63 2|79 of |95 _ 111 o 127 del

Data as Bits

16

word |ward/, n.

Natural unit of data used by processor.
Fixed size (e.g. 32 bits, 64 bits)
Defined by ISA: Instruction Set Architecture
machine instruction operands

word size = register size = address size

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 98 76 5 4 3 2 1 0

’OOOOOOOO101011111000000000100000

\ Java/Cint = 4 bytes: 11,501,584
MSB: most significant bit

Data as Bits 17

fixed-size data representations

(size in bytes)

Java Data Type C Data Type [word = 32 bits] [word = 64 bits]
boolean 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8

double double 8 8
long long long 8 8
8 16

/ long double

Depends on word size!

Data as Bits

18

bit = Boolean
bitwise operators o ke

Bitwise operators on fixed-width bit vectors.

AND & OR| XORA NOT~™
01101001 01101001 01101001
& 01010101 | 01010101 A 01010101 ~ 01010101
01000001
01010101
A 01010101

Laws of Boolean algebra apply bitwise.
e.g., DeMorgan’s Law: ~(A | B)=~A&~B

Data as Bits 19

bitwise operators in C

& | ~ ~ apply to any integral data type

long, int, short, char, unsigned

Examples (char)
~0x41 =

~0x00 =

0x69 & 0x55 =

0x69 | 0x55 =

Many bit-twiddling puzzles in upcoming assignment

Data as Bits 20

Representation Example 1:
Sets as Bit Vectors

Representation: n-bit vector gives subset of {0, ..., n—1}.

a,=1ziecA

a = 0001101001 A={0,3,56}
6543210

b = 0001010101 B={0,2,4,6}
6543210

Bitwise Operations

Set Operations

a & b = 001000001 {0, 6} Intersection

a | b = 0001111101 {0,2,3,4,5,6} Union

a ~ b = 0000111100 {2,3,4,5} Symmetric difference
~ b = 0010101010 {1,3,5,7} Complement

Data as Bits 21

logical operations in C

&&

] ! apply to any "integral" data type

long, int, short, char, unsigned

0 is false nonzero is true

early termination a.k.a. short-circuit evaluation

Examples (char)

0x69 && 0x55
0x69 || O0x55

result always O or 1

Data as Bits 22

Representation Example 2:
Playing Cards

52 cards in 4 suits
How do we encode suits, face cards?

What operations should be easy to implement?
Get and compare rank
Get and compare suit

5]
™

L d

o

2 e

[*T3

*| *| *| *| *|
HER KRN KRN KR

<

=
(AR
o

oo 300 (ioolos
L EX AR Y

.| vl
L X HEX D
ivw e ivew|ve
v [vo|ve
Sl & a3 & a2 & aF & &)

o

<

<>

™
<&

<o

<>
k4
[T

e
o
* o o> CC(CP> P
e
<
<
e
<
<
ne

o 0[50 0 (50 0 [l0 0|
LI N I
MK KX KX EKXM

=
o)

<o
>
e

Data as Bits 23

Two possible representations

52 cards — 52 bits with bit corresponding to card setto 1

OO T T T T T T T i)
¥ 52 bits in 2 x 32-bit words

“One-hot” encoding
Hard to compare values and suits independently
Not space efficient

4 bits for suit, 13 bits for card value — 17 bits with two set to

Pair of one-hot encoded values
Easier to compare suits and values independently
Smaller, but still not space efficient

Data as Bits 24

Two better representations

Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte

Number cards uniquely from 0
Smaller than one-hot encodings.
Hard to compare value and suit

Binary encoding of suit (2 bits) and value (4 bits) separately
LI T T[]

suit value

Number each suit uniquely
Number each value uniquely
Still small

Easy suit, value comparisons

Data as Bits

25

Compare Card Suits

mask: a bit vector that, when bitwise

ANDed W|th.anotl.1er bit v<.ector v, turns 0 | 0 | 1 | 1 | 0 | 0 I 0 | 0 |
all but the bits of interestin vto 0 pr—
#define SUIT MASK 0x30 suit value

int sameSuit (char cardl, char card2) {
return ! ((cardl & SUIT MASK) “~ (card2 & SUIT MASK)) ;

//same as (cardl & SUIT MASK) == (card2 & SUIT MASK);
}

char hand[5]; // represents a 5-card hand

if (sameSuit(hand[0], hand[1])) { ... }

Data as Bits 26

Compare Card Values

mask: a bit vector that, when bitwise

ANDed with another bit vector v, turns | | | | | I | |
all but the bits of interest in vto O / p—
value

#define VALUE_MASK suit

int greaterValue (char cardl, char card2) {

char hand[5]; // represents a 5-card hand

if (greaterValue(hand[0], hand[1])) { ... }

Data as Bits

27

Bit shifting
X 10011001

W

X << 2 011001

lose bits on left

logical shift left 2

10011001 X
NN
shift right 2 100110
lose bits on right
shift right 2 100110

Data as Bits 28

Shift gotchas i

Logical or arithmetic shift right: how do we tell?
C: compiler chooses

Usually based on type: rain check!

Java: >> is arithmetic, >>> is logical

Shift an n-bit type by at least 0 and no more than n-1.

C: other shift distances are undefined.
anything could happen

Java: shift distance is used modulo number of bits in shifted type
Given intx: x<<34==x<<2

Data as Bits 29

Shift and mask: extract a bit field

Write a C function that
extracts the 2"¥ most significant byte
from its 32-bit integer argument.

Example behavior:

argument: 01100001 (01100010f 01100011 01100100
expected result: 0000}700 00000000 00000000 (01100010
All other bits are zero. Desired bits in least significant byte.

int get2ndMSB(int x) {

Data as Bits 30

