
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Digital Logic
Gateway to computer science

transistors, gates, circuits, Boolean algebra

Digital Logic 1

Devices (transistors, etc.)

Solid-State Physics

Ha
rd
w
ar
e

Digital Logic
Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

So
ftw

ar
e

Digital Logic 2

Digital data/computation = Boolean
Boolean value (bit): 0 or 1
Boolean functions (AND, OR, NOT, …)
Electronically:

bit = high voltage vs. low voltage

Boolean functions = logic gates, built from transistors
Digital Logic 3

0.0V
0.5V

2.8V
3.3V

0 1 0

Abstraction!

Truth table

Transistors (more in lab)

Digital Logic 4

Base

Collector

Emitter

If Base voltage is high:
Current may flow freely
from Collector to Emitter.

If Base voltage is low:
Current may not flow
from Collector to Emitter.

Vin Vout

low high
high low

in out
0 1
1 0

in out
F T
T F

==

NOT gate

Abstraction!

+Vcc (Supply
Voltage)

(Ground)

resistor

Vin

Vout

Tiny electronic devices that compute basic Boolean functions.

Digital Logic Gates

Digital Logic 5

NAND

Vin

+Vcc

Vout

V1

+Vcc

Vout

V2

Abstraction! ex

NOT

Vin Vout

0 1
1 0

0 1
0
1

V1

V2

Integrated Circuits (1950s -)

Digital Logic 6

Wafer

Chip

Small integrated circuit

Early (first?) transistor

Five basic gates: define with truth tables

Digital Logic 7

NOT NAND NOR

AND OR

0 1
1 0

0 1
0 1 1
1 1 0

0 1
0
1

0 1
0
1

0 1
0
1

ex Simple Boolean Expressions
for combinational logic

Digital Logic 8

A
B

A
B A + B

(also A∨B)

A A
(also ¬A, ~A, A’)

A A

inputs = variables
wires = expressions
gates = operators/functions
circuits = functions

AND = Boolean productOR = Boolean sum

NOT: inverse or complement
wire: identity

AB
(also A⋅B, A∧B, , A.B, A*B)

A boolean literal is a variable or its complement.
E.g., A, A’, B, B’ are literal boolean expressions, but A + B, AB, and (AB)’ are not.

Orange forms are most convenient in text editors.

General Boolean Expressions

Digital Logic 9

Boolean expressions are generated by this context free grammar:

BE ::= variable | 0 | 1 | BE’ | BE + BE | BE * BE | (BE)

Precedence: (…) > NOT > AND > OR

E.g., A’B + CD’ means ((A’)*B) + (C*(D’))

Circuits & Boolean Expressions

Digital Logic 10

ex

Q

A
B

C

Given input variables, circuits specify outputs as functions of
 inputs using wires & gates.

o Crossed wires touch only if there is an explicit dot.
o T intersections copy the value on a wire and don’t need a dot.
o It doesn’t make sense to wire together two inputs or two outputs;

instead, combine two independent wires with a gate!

Each output can be translated to a boolean expression
in terms of the input variables.

What is a boolean expression for Q in the above circuit?

A B C Q
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

What is the truth table for
Q in the example circuit?

Translation Exercise
Connect gates to implement these functions. Check with truth tables.
Use a direct translation -- it is straightforward and bidirectional.

F = (AB + C)D

Z = W + (X + WY)

Digital Logic 11

ex Larger gates
Using 2-input AND gates, it’s easy to build an AND gate with more than 2 inputs.
E.g., How can we build a 4-input AND gate from three 2-input AND gates?

Digital Logic 12

Multi-input OR gates with can be created analogously.
Multi-input NAND and NOR gates can be created by
inverting the outputs of multi-input AND and OR gates.

Circuit derivation: code detectors
A multi-input AND gate preceded by some inverters = code detector that
recognizes exactly one input code (a specific combination of inputs).

E.g., here’s a 4-input code detector that outputs 1 if ABCD = 0101, and 0 otherwise:

Design a 4-input code detector to accept two codes (ABCD=1001, ABCD=1101) and
reject all others (accept = 1, reject = 0). Use as many gates as you need.

Digital Logic 13

ex

A
B
C
D

Sum-of-products (SoP) Form

Digital Logic 14

ex

A B C Q
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A sum-of-product (SoP) form is a boolean expression for a circuit output that is
expressed as a sum of minterms, one for each row whose output is 1.

A minterm for a row is a product of literals (variables or their negations) whose
value is 1 for that row. Think of it as being a code detector for that row!

What is the sum-of-products expression
for the truth table below?

How would you draw the circuit for this expression?
How is it related to code detectors from the previous slide?

Voting machines
A majority circuit outputs 1 if and only if a majority of its inputs equal 1.
Design a majority circuit for three inputs. Use a sum of products.

Digital Logic 15

A B C Majority
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

ex

Triply redundant computers in spacecraft
• Space program also hastened Integrated Circuits.

Product-of-sums (PoS) Form

Digital Logic 16

ex

A B C Q
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A product-of-sums (PoS) form is a boolean expression for a circuit output that is
expressed as a product of maxterms, one for each row whose output is 0.

A maxterm for a row is a sum of literals (variable or their negations)
whose value is 0 for that row.

What is the product-of-sums expression
for this truth table?

How would you draw the circuit for this expression?
How can you relate it to the notion of code detectors?

Boolean Algebra: Simple laws

Digital Logic 17

Boolean algebra laws can be proven by truth tables and used to show equivalences
between boolean expressions.
 For all laws in one place, see the Boolean Laws Reference Sheet

Boolean Algebra: More Complex Laws

Digital Logic 18

You can use truth tables (or other Boolean laws) to convince yourself that these laws hold.
(See the exercises on the following slides).

Boolean Algebra: Proving Laws by Truth Tables

Digital Logic 19

Use truth tables (or other Boolean laws) to convince yourself that these laws hold.

ex

A B (A’)+(B’) (AB)’

0 0

0 1

1 0

1 1

A B (A+B)’ (A’)(B’)

0 0

0 1

1 0

1 1

Complete the truth tables below to show that both DeMorgan’s laws hold for two variables.

Boolean Algebra: Proving Laws by Truth Tables

Digital Logic 20

ex

A B C A+BC
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C (A+B)(A+C)
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C A(B+C)
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C AB + AC
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Complete the truth tables below to show that both distributive laws hold.

Notes:
• The law in the right column (distributing multiplication over addition) should be

familiar from algebra of numbers.
• The law in the left column (distributing addition over multiplication)

is not true in the algebra of numbers but is true for Boolean algebra!

Boolean Algebra: Proving Laws by Algebra

Digital Logic 21

Use truth tables (or other Boolean laws) to convince yourself that these laws hold.

A + A*B
= 1*A + A*B [Identity (*)]
= A*1 + A*B [Commutativity (*)]
= A*(1 + B) [Distributivity (*/+)]
= A*1 [One law]
= 1*A [Commutativity (*)]
= A [Identity]

A + A*B
= A*1 + A*B [Identity]
= A*(1 + B) [Distributivity]
= A*1 [One law]
= A [Identity]

A*(A + B)
= (0 + A)*(A + B) [Identity (+)]
= (A + 0)*(A + B) [Commutativity (+)]
= A + 0*B [Distributivity (+/*)]
= A + 0 [Zero law]
= 0 + A [Commutativity (+)]
= A [Identity]

A*(A + B)
= (A + 0)*(A + B) [Identity (+)]
= A + 0*B [Distributivity (+/*)]
= A + 0 [Zero law]
= A [Identity]

ex
pl

ici
t

Co
m

m
ut

at
iv

ity
im

pl
ici

t
Co

m
m

ut
at

iv
ity

Step-by-step derivation Dual step-by-step derivation
(Swap * ó +, 0 ó 1)Each step has a redex

= the subexpression
to which the law
is applied.

Here, both the redex
and the applied law
are highlighted in the
same color.

But redexes can also
be highlighted by
boxing, underlining,
etc.

The explicit *s
highlight the duality
between * and +,
but can be replaced
by juxtaposition.

Boolean Algebra: Proving Laws by Algebra

Digital Logic 22

Use truth tables (or other Boolean laws) to convince yourself that these laws hold.

ex

Digital Logic 23

Use truth tables (or other Boolean laws) to convince yourself that these laws hold.

Boolean Algebra: Proving Laws by Algebra ex Circuit simplification
Is there a simpler circuit that performs the same function?

Start with an equivalent Boolean expression, then simplify with algebra, and
convert the simplified expression back to a circuit.
 F(A, B, C) =

Digital Logic 24

Why simplify?
Smaller = cheaper, faster, cooler,

easier to design/build.

Check the answer with a truth table.

ex

Output = 1 if exactly one input = 1.
Truth table: Build from earlier gates
 (start with SoP or PoS):

Often used as a one-bit comparator.

XOR: Exclusive OR

Digital Logic 25

ex

XOR 0 1
0
1

NAND is universal

Digital Logic 26

All Boolean functions can be implemented using only NANDs.
Build NOT, AND, OR, NOR, using only NAND gates.

ex

In Gates assignment, you will show that XOR can be built from
NAND gates

NOR is also universal

Digital Logic 27

All Boolean functions can also be implemented using only NORs.
Build NAND using only NOR gates; then since NAND is universal,
NOR must be too! (Why?)

ex

In Gates assignment, you will show that XOR can be built from
NOR gates

A-0: first compiler, by Grace Hopper
Early 1950s
Maybe closer to
assembler/linker/loader

Later: B-0 à FLOW-MATIC
à COBOL, late 50s

Plan 28

Early pioneers in reliable computing

Early pioneers in reliable computing
Apollo 11 code print-out

Katherine Johnson
l Calculated first US human space flight

trajectories
l Mercury, Apollo 11, Space Shuttle, …
l Reputation for accuracy in manual calculations,

verified early code
l Called to verify results of code for launch

calculations for first US human in orbit
l Backup calculations helped save Apollo 13
l Presidential Medal of Freedom 2015

Margaret Hamilton
l Led software team for Apollo 11

Guidance Computer, averted mission
abort on first moon landing.

l Coined “software engineering”,
developed techniques for correctness and
reliability.

l Presidential Medal of Freedom 2016 Digital Logic 29

Katherine Johnson
l Supported Mercury, Apollo, Space

Shuttle, ...

Dorothy Vaughan
l First black supervisor within NACA
l Early self-taught FORTRAN

programmer for NASA move to digital
computers.

Computers
l Manual calculations
l powered all early

US space missions.
l Facilitated transition to

digital computers.

Digital Logic 30

Mary Jackson
l NASA’s first black female engineer
l Studied air around airplane via wind

tunnel experiments.

Wellesley Connection: Mary Allen Wilkes ‘59

Digital Logic 31

Created LAP operating system at
MIT Lincoln Labs for Wesley A. Clark’s
LINC computer, widely regarded as the
first personal computer (designed for
interactive use in bio labs). Work done
1961—1965.
Created first interactive keyboard-based text editor on 256
character display. LINC had only 2K 12-bit words; (parts of)
editor code fit in 1K section; document in other 1K.

Early versions of LAP
developed using LINC
simulator on MIT TX2
compute, famous for
GUI/PL work done by
Ivan and Bert Sutherland
at MIT.

In 1965, she developed LAP6 with LINC in Baltimore
living room. First home PC user!

Later earned Harvard law degree and headed Economic Crime
and Consumer Protection Division in Middlesex (MA) County
District Attorney's office.

