
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/ Dynamic Memory Allocation

Dynamic Memory Allocation in
the Heap

Explicit allocators
Manual memory management

C: implementing malloc and free

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

2

Outline
• Motivation/alternatives
• Design goals for a memory allocator

• Utilization/fragmentation
• Implicit free list allocator

• Tracking sizes
• Allocating blocks
• Coalescing blocks

• Explicit free lists
• List vs. memory order
• Freeing/coalescing

3

Addr

2N-1 Stack

Heap

Statics

Literals

Text

0

Addr Perm Contents Managed by Initialized

2N-1 Stack RW Procedure context Compiler Run-time

Heap RW Dynamic
data structures

Programmer,
malloc/free, new/

GC
Run-time

Statics RW Global variables/
static data structures

Compiler/
Assembler/Linker Startup

Literals R String literals Compiler/
Assembler/Linker Startup

Text X Instructions Compiler/
Assembler/Linker Startup

0

Heap Allocation

4

Motivation: why not just allocate in memory order?

5

Heap memory
• • •

0x7fdf28
0x7fdf20
0x7fdf18
0x7fdf10malloc(8)

malloc(16)

malloc(8)

void process_incoming_data(int data[]) {
 // Build complicated data structures
 // ...
 print(“%d”, result);
 // Don’t need data or backing work!
}

Memory
use

Time

Memory
use

Time

With a smarter
memory allocator

Motivation: what data do we need to track?

6

What data structures could we use to track this?

ex

Actual dynamic memory allocator design

7

Design the allocator to store data
“inline” within the heap memory itself

• Space efficient: no need for much data “on the side”
• Use pointer arithmetic to calculate results
• Good use of caches/locality (we’ll cover more later)

void* malloc(size_t size);

void free(void* ptr);

Allocator basics

8

Allocated block
(4 words)

Free block
(3 words)

Free word

Allocated word

pointer to allocated block to free

number of contiguous bytes required
pointer to newly allocated block
of at least that size

Pages (OS-provided) too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

Example (64-bit words)

9

p1 = malloc(32);

p2 = malloc(40);

p3 = malloc(48);

free(p2);

p4 = malloc(16);

Allocator goals: malloc/free

10

O(. . .)2. Fast allocation.
mallocs/second or bytes malloc'd/second

3. High memory utilization.
Most of heap contains necessary program data.
Little wasted space.

Enemy: fragmentation – unused memory that cannot be allocated.

p = malloc(32);
// ...
free(p)

1. Programmer does not decide locations of distinct objects.
Programmer decides: what size, when needed, when no longer needed

Internal fragmentation
Payload smaller than block

11

payload

block

Internal
fragmentation

Causes
• Metadata (bookkeeping)
• Alignment (8, 16, …)
• Policy decisions

External fragmentation (64-bit words)

Depends on the pattern of future requests.

12

p1 = malloc(32);

p2 = malloc(40);

p3 = malloc(48);

free(p2);

p4 = malloc(48);

Total free space large enough, but no contiguous free block large enough!

Implementation issues
1. Determine how much to free given just a pointer.

2. Keep track of free blocks.

3. Pick a block to allocate.

4. Choose what do with extra space when allocating a
structure that is smaller than the free block used.

5. Make a freed block available for future reuse.

13

Knowing how much to free
Keep length of block in header word preceding block

14

p0 = malloc(32);

free(p0);

p0

block size metadata data payload

48

Takes extra space!

Keeping track of free blocks
Method 1: Implicit free list of all blocks using length

Method 2: Explicit free list of free blocks using pointers

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip…

15

40 32 1648

40 32 1648

Implicit free list: block format

16

16-byte aligned sizes have
4 zeroes in low-order bits
 00000000
 00010000
 00100000
 00110000
 …

Steal LSB for status flag.
LSB = 1: allocated
LSB = 0: free

Block metadata:
1. Block size
2. Allocation status

Store in one header word.

block size

1 word

payload
(application data,
when allocated)

a

optional padding

payload
(application data,
when allocated)

Implicit free list: heap layout

17

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word wasted

Start of
heap

Block Header
(metadata)

Block size Block allocated?

Special end-heap word
Looks like header of
zero-size allocate block.

Initial heap
word cannot
be part of
block.

Alignment may
cause internal
fragmentation

Payloads start at 16-byte (2-word) alignment.
Pointers returned by malloc are to payloads, not headers
Block sizes are multiples of 16 bytes.

Implicit free list: finding a free block
First fit:

Search list from beginning, choose first free block that fits

Next fit:
Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

18

Implicit free list: allocating a free block

19

16 1648

p = malloc(24);

Now showing allocation status flag implicitly with shading.

Allocated space ≤ free space.
Use it all? Split it up?

1616 1632

p

Block Splitting

Implicit free list: freeing an allocated block

20

16 1632 16

p

free(p);

malloc(40);
External fragmentation!
Enough space, not one block.

16 1632 16

Clear allocated flag.

Coalescing free blocks

21

32 1632 16

free(p)

p

Coalesce with preceding free block?

32 1648 16

Coalesce with following free block.

logically gone

Bidirectional coalescing: boundary tags

22

Boundary tag
(footer)

32 32 32 32 48 3248 32

Header block size

payload
(application data,
when allocated)

a

optional padding

block size a

[Knuth73]

Conceptually: more like a doubly-linked list

Constant-time O(1) coalescing: 4 cases

23

m1 1

m1 1
n 0

n 0
m2 1

m2 1

m1 1

m1 1
n 1

Freed Block
n 1

m2 1

m2 1

before: alloced
after: alloced

m1 0

m1 0
n 1

Freed Block
n 1

m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

before: free
after: alloced

m1 1

m1 1
n 1

Freed Block
n 1

m2 0

m2 0

before: alloced
after: free

n+m1+m2 0

n+m1+m2 0

m1 0

m1 0
n 1

Freed Block
n 1

m2 0

m2 0

before: free
after: free

m1 1

m1 1
n+m2 0

n+m2 0

Improved block format
for implicit free lists

24

Free block:Allocated block:

block size

payload

1p block size a

block size

0p

Update headers of 2 blocks on each malloc/free.

Minimum block size for implicit free list?

block size

payload

1p

block size a

block size

01

block size 0

payload

1

block size

payload

11

this block
allocated?

prev block
allocated?

25

26

27

Summary: implicit free lists
Implementation: simple

O(…) for allocate and free?
Allocate: O(blocks in heap)
Free: O(1)

Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

28

Splitting, boundary tags, coalescing are general to all allocators.

Explicit free list: block format

Explicit list of free blocks rather than implicit list of all blocks.

29

Free block:
block size a

next pointer

prev pointer

block size a

Allocated block:

(same as implicit free list)

block size

payload
(application data,
when allocated)

a

optional padding

block size aPossible to omit footer

Explicit free list: list vs. memory order
Abstractly: doubly-linked lists

Concretely: free list blocks in any memory order

30

A B C

32 32 32 32 4848 3232 32 32

Next

Previous

A B

C

Previous

Next

List Order ≠ Memory Order

Explicit free list: allocating a free block

31

Before

After

= malloc(…)

(with splitting)

Explicit free list: freeing a block
Insertion policy: Where in the free list do you add a freed block?

LIFO (last-in-first-out) policy
Pro: simple and constant time
Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
Con: linear-time search to insert freed blocks
 Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

32

Freeing with LIFO policy:
between allocated blocks

Insert the freed block at head of free list.

33

free()

Head

Head

Before

After

ex

blue: next
red: prev

open: NULL

Freeing with LIFO policy:
between free and allocated

Splice out predecessor block, coalesce both memory blocks, and insert the
new block at the head of the free list.

34

free()

Head

Before

Head

After

Could be on either or both sides...

ex

blue: next
red: prev

open: NULL

Freeing with LIFO policy:
between allocated and free

Splice out successor block, coalesce both memory blocks and insert
the new block at the head of the free list.

35

free()

Head

Before

Head

After

ex

blue: next
red: prev

open: NULL

Freeing with LIFO policy:
between free blocks

Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the
new block at the head of the list.

36

free()

Head

Before

Head

After

blue: next
red: prev

open: NULL

Summary: Explicit Free Lists
Implementation: fairly simple

Allocate: O(free blocks) vs. O(all blocks)
Free: O(1) vs. O(1)

Memory utilization:
depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.
37

Improved block format
for explicit free lists

38

Free block:Allocated block:

block size

payload

1p block size a

next pointer

prev pointer

block size

0p

block size

payload

1p

block size a

next pointer

prev pointer

block size

01

block size 0

payload

1

block size

payload

11

Update headers of 2 blocks on each malloc/free.

Minimum block size for explicit free list?

39

Seglist allocators
Each size bracket has its own free list

Faster best-fit allocation...

40

32

48-64

80-inf

16

Summary: allocator policies

Placement policy:
First-fit, next-fit, best-fit, etc.
Seglists approximate best-fit in low time

Splitting policy:
Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

41

All policies offer trade-offs in fragmentation and throughput.

