WELLESLEY Motivation
CS 240
Foundations of Computer Systems 2 int x =y * 2; int p = q & 0x0000FFFF;
2
q": for (int i1 = 0; i < 10; i++) {
o
A Simple Processor @ !
How do we connect these?
1. Asimple Instruction Set Architecture) ALU with Adder (compute) Registers (local data storage)
2. A simple microarchitecture (implementation): b 16-bit
Data Path and Control Logic g T “zg'Ster %
-E RAM (Iarger/lor}ger data storage)
© —
I —
https://cs.wellesley.edu/~cs240/ 1 ik Data Out

Program, Application
Instruction Set Architecture ()
Programmlng Language Instructions processor memory
« Names, Encodings
Compiler/l nterpreter « Effects Instruction Encoded
« Arguments, Results Logic Instructions
« Abstraction over ALUs

Names, Size
Instruction Set Architecture

How many Large storage
Addresses, Locations

Digital Logi \ / define the
) petuean sofewnre and
omputer
|

Software

connection

——
N’/

implementation Microarchitecture

Hardware

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

are an abstract
Com puter model of the underlying
hardware.
Microarcthitecture (of ISA)
This week:

HW ISA

An example ISA and
hardware implementation
for CS240!

Basic building block of an ISA:
the instruction!

are an abstract

model of the underlying
hardware.

This week:

HW ISA

An example ISA and
hardware implementation
for CS240!

HW I[SA Summary (details to follow)

Word size = 16 bits (2 bytes)

« ALU computes on 16-bit values.

Register size = 16 bits

Number of registers = 16
RO always holds 0
R1 always holds 1.

» Access 16 bits at once « Instructions are 16 bits in size

Instruction
» Byte-addressable (new S| ¢ Storedin separate memory
address every 8 bits) DILEE o Program counter (PC) register

holds address of next instruction

HW I[SA R: Register File

Read ports
——>>| Register address #1 Read data 1 W
— Register address #2 Read data 2 [——>
Write port

—~>| Register address #3
— Write data Write?

0 =read

1= write

Using your understanding of powers of 2 needed to make selections, how many bits should be Hl &X/ I[SA R: Register File \ Reg [Contents
on the labeled busses? p.bst"ac“o“ RO |0x0000
R1 |0x0001
Read ports)
> We'll think of the
r=8w=8 —=>| Register address #1 Read data 1 w register file like this: R3
Read ports R4
i ddi Read data 1 [——=> i
——>| Register address #1 ——>| Register address #2 Read data 2 ——=r> RS
——>o>| Register address #2 Reaq data 2 [—y> r=16,w=16 ﬁo Z|Wady5dh(())|ds R6
Write bort Write port ardcode R7
rite pol . R1 always holds
——>| Register address #3 | Register address #3 hardcodyed 1 &
o Write data wm;? ; T W= ——— | Write data Write? R9
= rea w
_ﬁ = write 0 =read R
1 =write R2 — R15: general purpose R11
Word size = 16 bits, # registers = 16 r=16,w=4 : .
r=2 (instructions can use them R12
Jp . . . to hold anythin,
v Word size = 16 bits, # registers = 16 ything) e
R14
None of the above r =2
_ - R15
w = 7
.. Start the presentation to see live content. For screen sh: ft hare the reen. Get help at poll . 10
" m
I[I[W I[SA M: Data lVIemory q What is the full word stored at address 0x2? @0
tractio™
[\

We’'ll think of the data memory like this:

Memory is byte-addressable, accesses full words (16 bits) Address [Contents
0x0—0x1 |0x01 0x00
0x2 -0

Memory is “Little Endian”: the “little” (low) byte is stored
at the lower address.

i
0x6<0x7
0x8 — 0x9
0xA — OxB
0xC - 0xD

Example: storing 1 at address 0x0 yields

Address |Contents

0x0—0x1 |0x01 0x00
0x2 —0x3 [0x23 0x45
0x4 —0x5 |0x67 Oxab
0x6 — 0x7

0x8 — 0x9

OxA — 0xB

0xC —0xD

Start the presentation to see live content. For screen sh

0x2345

0x4523

0x2300

0x0023

0x2367

. Get help at poll /

M: Data Memory

R: Register File

H %/\/]:[SA 1M: |nstruction Memory H %/%/ I[SA Address |Contents Reg |Contents
0x0 - 0x1 RO |0x0000
vA-G8 R1 [0x0001

\! 0x4 — 0x5
. . stractio” R2
Instructions are 1 word in size. & 0x6 — Ox7
. . ctiont . 0x8—0x9 R3
Separate instruction memory. pbstr@ Abstract Machine s R2
XA — UX
. - RS
Program Counter (PC) register 0D
. . We'll think of the instruction memory R6
» holds address of next instruction to execute. like this: R7
. . i R8
Program Counter PC: Program Counter :\'X;. Instrzcttlor: Memory -
AN pC oo | [Address Address _[Contents
—— 0x0 — Ox1 =03 R10
PC—pr—— : 0x2 — 0x3 _ R11
E— Processor ; ::CSZ L’Z‘TE] e —— Processor Loop 0x4 — 0x5 0
——— Loop |) 1. ins € IM[PC] 0x6 — 0x7
3. Doins 0x6 — 0x7 R13
2. PC& PC+2 0x8 — 0x9
0x8 — 0x9 .
3. Doins R14
R15
13 14
HW I[SA Instructions wss 16-bit Encoding (s HW I[SA IM: Instruction Memory
L
Assembly Syntax Meaning ﬂu“
- Instructions are 1 word in size. .
. . sont
ADDRs,Rt,Rd Rid] < RIs] + Rit] R S A Separate instruction memory. postracti©
SUBRs,Rt,Rd R[d] € R[s]-RI] 0011 s t d
- Arithmetic Program Counter (PC) register
AND Rs, Rt, Rd R[d] € R[s] &R[t] 0100 s t d . . We’ll think of the instruction memory
« holds address of next instruction to execute. like this:
ORRs, Rt, Rd Rld] € RIs] | R[t] 0101 s t d
WR R . 9 ‘l Program Counter
t, offset(Rs) R[t] € MI[R[s] + offset] s t offset L emory PC 0x2 Address |Contents
SW Rt, offset(Rs) M[R[s] + offset] € RIt] 0001 s t offset PC e — 0x0-0x1 |ADD RO, R1, R2
- B R] m— Processor |1 ins€ IM[pc]| [0x2-0:3 [SUBR2,R1, R3
If R[s] == R[t] then —
BEQRs, Rt, offset . 0111 s t offset L 2. PC& PC+2 | [0x4-0x5 |ORR3,R3, R4
PC & PC+2+offset*2 L Control flow ——— oop % D X6 =0
IMP offset i
un;g;: L IMPoffset PC & offset*2 1000 offset] 0x8 — 0x9
All other offsets HALT Stops program execution 1111

are signed

 ___|
What is the next operation this processor will do? 20
ADD
Program Counter SUB
PC ox2 Address |Contents
0x0 - 0x1 |ADD RO, R1, R2
processor |1 ins€ wipc]| [D2=05 [SUBRERL.RS
3 pee bCr | [OA=ONS [ORRS,RS,RA
Loop 3. Doins 0x6 — 0x7
oa-00
OR
None of the above
.. Start the presentation to see live content. For screen sh: ft hare the reen. Get help at poll u

Fill in the rest of the
machine state based on
this initial state

PC: Program Counter

Processor Loop
1. ins € IM[PC]
2. PC& PC+2

3. Doins

M: Data Memory

R: Register File

Address |Contents Reg |Contents
0x0—0x1 |0xOF 0x00 RO |0x0000
0x2 —0x3 |0x04 0x01 R1 |0x0001
0x4 — 0x5 R2
0x6 — 0x7 =
0x8 — 0x9
OxA — OxB b
0xC— 0xD RS
R6
R7
IM: Instruction Memory R8
Address |Contents R9
0x0—0x1 |ADD R, R1, R2 R10
0x2 —0x3 |[SW R2, 4(R0) =
0x4 —0x5 |HALT RiD)
0x6 — 0x7
0x8— 0x9 R
R14
R15

Execution Table for Exercise #0 (shows step-by-step execution)
Solutions

R A - R—
0x0 ADDR1,R1,R2 R[2] < R[] &R[1] =1+140] pce pci2=0+2 =2
ox2 SWR2,4(R0) MIR[0] +4] = M[4] & R[2]{0x0002;

Ox4 HALT

C & PCH2=6+2 =8

Program execution stops

Reminder: the two bytes will are
stored in Little Endian order when
we store them to memory M.

That is, the byte 0x02 will be stored
in the “little” end of the word—the
lower address of the pair of

addresses that store the word. 0x00
will be stored at the higher address.

m Exercise O
Solutions

HW ISA

PC: Program Counter

Processor Loop
1. ins € IM[PC]
2. PCE PC+2

3. Doins

M: Data Memory

R: Register File

Address |Contents Reg |Contents
0x0—0x1 |0xOF 0x00 RO |0x0000
0x2 —0x3 |0x04 0x01 RT |0x0001
0x4 — 0x5 |0x02 0x00 R2 lox0002
0x6 — 0x7
R3
0x8 — 0x9
O0xA — OxB e
0xC — 0xD R5
R6
R7
IM: Instruction Memory R8
Address |Contents R9
0x0—0x1 |ADD RL, R1, R2 R10
0x2 —0x3 |SW R2, 4(RO) RIL
0x4 —0x5 |HALT Ri5
0x6 — 0x7
0x8— 0x9 R
R14
R15

Fill in the rest of the
machine state based on
this initial state

PC: Program Counter

Processor Loop

1. ins € IM[PC]
2. PC& PC+2
3. Doins

M: Data Memory

R: Register File

Address |Contents Reg |Contents
0x0 — 0x1 |OxOF 0x00 RO |0x0000
0x2 —0x3 |0x04 0x01 RT |0x0001
0x4 — 0x5 R2
0x6 — 0x7
0x8 — 0x9 5
OxA — OxB e
0XC — 0XD RS

R6

R7
IM: Instruction Memory R8
Address |Contents R9
0x0—0x1 |LW R3, O(RO) R10
0x2—0x3 |LW R4, 2(R0) R
0x4—0x5 |AND R3, R4, RS
0x6 —0x7 |SW R5, 4(R0O) [
0x3—0x0 |HALT R

R14

R15

Execution Table for Exercise #1 (shows step-by-step execution)

0x0 LW R3 0(RO)

Exercise 2
HW ISA

Fill in the rest of the
machine state based on
this initial state

PC: Program Counter

Processor Loop

1. ins € IM[PC]
2. PC& PC+2
3. Doins

M: Data Memory

R: Register File

Address _|Contents Reg |Contents (time: —)
0x0—0x1 |0xOF 0x00 FORRIDR 000
0x2 —0x3 |0x04 0x01
A R1 |0x0001
0x6 — 0x7 R2
0x8 — 0x9 R3
OxA — OxB R4
OxC — OxD RS

R6

R7
IM: Instruction Memory [Rs
Address |Contents RO |0x0002
0x0—0x1 |SUB R8, R8, R8
0x2—0x3 |BEQ R9, RO, 3 R10 |0x0003
0x4—0x5 |ADD R10, R8, R8 i
0x6 —0x7 |SUB R9, R1, R9 R12
0x8—0x9 |IMP 1 R13
O0xA — OxB |HALT R14

R15

Execution Table for Exercise #2 (shows step-by-step execution)

0x0 SUB RS, R8, R8

State Changes

HW ARCH microarchitecture

Instruction Fetch
(default, unless branch or jump)

Fetch instruction from memory.

Increment program counter (PC)
to point to the next instruction. 2
Instruction
Fetch and Registers Instruction
Decode Memory
Processor |1 ins€ IMIPC] pcle Read |
Loop g EE ; Ao Address Instruction
One possible hardware implementation of the HW ISA
25 26
. . .
Which of the following is used inside this unit? @0 Instruction Encod|ng: 3 formats
All have 4-bit opcode in MSBs
izl Arithmetic instructions: \
2 source register Ips (Rft) EEERREI N

Ripple-carry adder - 1 destination register ID (Rd) opcode Rs Rt Rd
Encoder Memory/branch instructions:

Add - address/source register ID (Rs) 15:12 [11:8 (7.4 3.0 |
A&B - data/source register ID (Rt) opcode Rs Rt offset

2 - 4-bit offset
Jump instruction: 15:12
- 12-bit offset opcode offset

c&D

.. Start th ion to see li . For screen sh: fty hare the enti . Get help at poll / .-

Arithmetic Instructions
16-bit Encoding
sirucion —Meaning —Opcode [t Kt td |
ADD Rs, Rt, Rd R[d] € R[s] + R[t] 0010 0-15 0-15 0-15
SUBRs, Rt, Rd R[d] & R[s]—R[t] 0011 0-15 0-15 0-15
AND Rs, Rt, Rd R[d] € R[s] & R[t] 0100 0-15 0-15 0-15
ORRs,Rt,Rd Rd € R[s]|R[t] 0101 0-15 0-15 0-15

Example encoding:

ADD R3, R6, Rg L Lili i T

0010 0011 0110 1000

Arithmetic Instructions:
Instruction Decode, Register Access, ALU

Opcode 4 | Control

Unit
Reg Write
4 Write Enable ALU Op

Re Read Addr 1 Read 16

16 4 |ReadAddr2 Datal
- RE)) overflow
Instruction | , Register File zero
Rd| Write Addr Read 16
ALU result

16 | Write Data Data 2

The control unit

A large instantiation of a truth table that controls parts of the microarchitecture

e

Input: the opcode
from the instructions

ALU Op

Opcode (4 | Control
N Unit

W Reg Write

Output: many wires
controlling decisions

You will implement the control unit on the Arch Assignment!

Memory Instructions

rsvucion——eaning ————op fs R rd |

LW Rt, offset(Rs) R[t] € Mem[R[s] + offset] 0000 0-15 0-15 offset
SW Rt, offset(Rs) Mem[R[s] + offset] € R[t] 0001 0-15 0-15 offset

Example encoding:

SWR6,-8(R3) JrCHLCMTINLTI

0001 0011 0110 1000

Memory Instructions:

Instruction Decode,

Register/Memory Access, ALU

How can we support arithmetic
and memory instructions?

What's shared?
Control
Opcode Unit
Reg Write ALU Op
a o AJE mlmu\u Mem Store
RS cd r Read 16 T
Write Enable
16| 4 Read Addr2 Datal 16 AEEIGES
Rt H i
Inst Register File
. g Data Memory
t| Write Addr Read | 16
Data 2 Write Read
16 | Write Data ’~ Data Data

Rd
(offset i(

4 Sign 16
extend

Arithmetic Instructions:

N N How can we support arithmetic
Instruction Decode, Register Access, ALU

and memory instructions?

What's shared?
Opcode 4 Control
Unit
Reg Write
4 Write Enable ALU Op
Re Read Addr 1 Read 16
16 4 |ReadAddr2 Datal
- Rt)) overflow
Instruction | , Register File zero
Rd| Write Addr Read 16
ALU result
16 | write Data Data 2

Choose between Arithmetic/Memory instructions with MUXs
Arthmet ory Instructions JRS

Mem

ALU Op

Mem Store

Write Enable

Address
Data Memory

Read
Data

Write
Data

4 Control
Opcode Unit |
U Reg Write
4 WH[L‘VEHJMD
we Read Addr 1 Read
16| .4 Read Addr2 ~ Datal
Inst Rt] Register File
4 t ﬂ— Write Addr Read
Choice: use the Rd Data 2
address from the 16 | Write Data
s T
(offset) extend

address?

Choice: use a second
register’s contents or

[

an offset as an
argument to the ALU?

Choice: write

result of ALU or

load from
memory?

Control-flow Instructions

16-bit Encoding

instruction __Meaning________[0p _[Rs _[Rt _[Rd |

If R[s] == R[t] then
BEQ Rs, Rt, t 0111 0-15 0-15 t
Q Rs offse PC € PC + 2 + offset*2 offse

Example encoding:

BEQR1, R2, -2 0111 0001 0010 1110

Compute branch target for BEQ

Shift left
by 1

Reg Write

Write Enable
4
Instruction Read Addr 1 Read
Y 164\ Read Addr2 Datal
Address —inst 7 Register File
o[Write Addr Read
Data 2
Write Data

Sign
extend

Make branch decision

l— 0
- + 1
Shift left
by 1 1
Branch?
[A— 3
Mem
4 Control |
i ALU Op
S
Reg Write &
o
3 N
Write Enable ,\e/
Mem Store
4
Instruction Read Addr1 o, 6 i
rew " | \6L\d_ | [ReadAddr2 Datal Addrem
Address Inst 1 Register File Dt Memory
4 o[Write Addr Read E
Data 2 Write Read
% Write bata Data Data

4 Sign 16 \
-extend <, .

What’s missing from what we covered in lecture?

o Details of Control Unit
« ALU op is not instruction opcode; some translation needed
* Reg Write bit (for ADD, SUB, AND, OR, LW)
* Mem Store bit (for SW)
* Mem bit (arithmetic/memory MUX bit)
¢ Branch bit (for BEQ)
o Implementation of JMP

o Implementation of HALT (basically stops the clock
running the computer; we won’t implement this)

See Arch Assignment!

HW ARCH not the only implementation

Single-cycle architecture
« Relatively simple, (barely!) fits on a slide (and in our heads).
« Every instruction takes one clock cycle each.
« Slowest instruction determines minimum clock cycle.
« Inefficient.
Could it be better?
« Performance, energy, debugging, security, reconfigurability, ...
« Pipelining
« 000: Out-of-order execution
« Caching
« ..enormous, interesting design space of Computer Architecture

Conclusion of unit: Computational Building Blocks (HW)

Lectures Topics
Digital Logic Transistors, digital logic gates
Data as Bits Data representation with bits, bit-level computation
Integer Representation Number representations, arithmetic
Combinational Logic Combinational and arithmetic logic
Arithmetic Logic Sequential (stateful) logic
Sequential Logic Computer processor architecture overview
A Simple Processor

Labs Assignments Mid-semester Exam 1: HW
1: Transistors to Gates Gates October 16
2: Data as Bits Zero
3: Combinational Logic & Arithmetic Bits
4: ALU & Sequential Logic Arch (out Thursday)

5: Processor Datapath

0

