
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Memory Hierarchy 
and Cache

Memory hierarchy

Cache basics

Locality

Cache organization

Cache-aware programming

1 2

Memory Hierarchy and Cache

Devices (transistors, etc.)

Solid-State Physics

Ha
rd

w
ar

e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

So
ft

w
ar

e

3 4

Examples: Nvidia documentation
“CUDA®, a general purpose parallel computing platform and
programming model that leverages the parallel compute engine in
NVIDIA GPUs to solve many complex computational problems in a
more efficient way than on a CPU.”

- Nvidia CUDA C++ Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guideWhat are these caches? Why the complex matrix multiply?

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Expectation: How does execution time grow with SIZE?

int array[SIZE];

fillArrayRandomly(array);

int s = 0;

for (int i = 0; i < 200000; i++) {

 for (int j = 0; j < SIZE; j++) {

 s += array[j];

 }

}

5
SIZE

TIME

Reality

6

0

12.5

25

37.5

50

0 2250 4500 6750 9000

SIZE

Ti
m

e

Processor-memory bottleneck

7

Main
Memory

CPU Reg

Processor performance

doubled about

every 18 months Bus bandwidth

evolved much slower

Solution: caches

Cache

Bandwidth: 256 bytes/cycle

Latency: 1-few cycles

Bandwidth: 2 Bytes/cycle

Latency: 100 cycles

Example

Cache
English:

n. a hidden storage space for provisions, weapons, or treasures 
v. to store away in hiding for future use

Computer Science:

n. a computer memory with short access time used to store
frequently or recently used instructions or data

v. to store [data/instructions] temporarily for later quick
retrieval

Also used more broadly in CS: software caches, file caches, etc.

8

Websites

General cache mechanics

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger, slower, cheaper.

Partitioned into blocks (lines).

Data is moved
in block units

Smaller, faster, more expensive.

Stores subset of memory blocks.

	 	 	 	 (lines)

CPU Block: unit of data

in cache and memory.

(a.k.a. line)

Cache hit

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

1. Request data in block b.Request: 14

14
2. Cache hit:

 Block b is in cache.

CPU

9

Cache miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

1. Request data in block b.Request: 12

2. Cache miss:

 block is not in cache

4. Cache fill:

 Fetch block from memory,

 store in cache.

Request: 12

12

12

9

9

12

3. Cache eviction:

 Evict a block to make room,

 maybe store to memory.

Placement Policy:

where to put block in cache

Replacement Policy:

which block to evict

CPU

Memory Hierarchy and Cache

Memory

Memory hierarchy 
Why does it work?

12

persistent storage (hard disk, flash, over network, cloud, etc.) 
GB/TB, >5M ns, 20-150 MBps

main memory (DRAM) 
<~64MB, 80-250ns, 1K-5K MBps

L3 cache

(SRAM, off-chip)

L1 cache (SRAM, on-chip) 
<16MB, 0.5-25ns access,  

5K-15K MBps

L2 cache

(SRAM, on-chip)

Registers 
<1KB,  

0.25-0.5ns,
20K MBps 

small, fast,
power-hungry,
expensive

large, slow,
power-efficient,
cheap

pr
og

ra
m

 se
es

 “m
em

or
y”

explicitly
program-
controlled

Locality: why caches work

Programs tend to use data and instructions at addresses near or
equal to those they have used recently.

Temporal locality:

Recently referenced items are likely  
to be referenced again in the near future.

Spatial locality:

Items with nearby addresses are likely 
to be referenced close together in time.

How do caches exploit temporal and spatial locality?

13

block

block

Locality #1: Basic iteration over array

Data:

Temporal: sum referenced in each iteration

Spatial: array a[] accessed in stride 1 pattern

Instructions:

Temporal: execute loop repeatedly

Spatial: execute instructions in sequence

Assessing locality in code is an important programming skill.

14

sum = 0;

for (i = 0; i < n; i++) {

 sum += a[i];

}

return sum;

What is stored in memory?

Locality #2: iteration over 2D array

15

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

 1: a[0][0]
 2: a[0][1]
 3: a[0][2]
 4: a[0][3]
 5: a[1][0]
 6: a[1][1]
 7: a[1][2]
 8: a[1][3]
 9: a[2][0]
10: a[2][1]
11: a[2][2]
12: a[2][3]

stride 1

int sum_array_rows(int a[M][N]) {

 int sum = 0;

 for (int i = 0; i < M; i++) {

 for (int j = 0; j < N; j++) {

 sum += a[i][j];

 }

 }

 return sum;

}

row-major M x N 2D array in C

ex Locality #3: iteration over 2D array

16

int sum_array_cols(int a[M][N]) {

 int sum = 0;

 for (int j = 0; j < N; j++) {

 for (int i = 0; i < M; i++) {

 sum += a[i][j];

 }

 }

 return sum;

}

 1: a[0][0]
 2: a[1][0]
 3: a[2][0]
 4: a[0][1]
 5: a[1][1]
 6: a[2][1]
 7: a[0][2]
 8: a[1][2]
 9: a[2][2]
10: a[0][3]
11: a[1][3]
12: a[2][3]

stride N

row-major M x N 2D array in C

…

…
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

Swapped
loop order

ex

What is "wrong" with this code?

How can it be fixed?

Locality #4

17

int sum_array_3d(int a[M][N][N]) {

 int sum = 0;

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 for (int k = 0; k < M; k++) {

 sum += a[k][i][j];

 }

 }

 }

 return sum;

}

Cost of cache misses
Miss cost could be 100 × hit cost.

99% hits could be twice as good as 97%. How?

Assume cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time:

97% hits: (0.97 * 1 cycle) + (0.03 * 100 cycles) = 3.97 cycles

99% hits: (0.93 * 1 cycle) + (0.01 * 100 cycles) = 1.93 cycles

18

hit/miss rates

Cache performance metrics
Miss Rate

Fraction of memory accesses to data not in cache (misses / accesses)

Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc.

Hit Time

Time to find and deliver a block in the cache to the processor.

Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

Miss Penalty

Additional time required on cache miss = main memory access time

Typically 50 - 200 cycles for L2 (trend: increasing!)

19

Cache organization
Block

Fixed-size unit of data in memory/cache

Placement Policy

Where in the cache should a given block be stored?

Replacement Policy

What if there is no room in the cache for requested data?

▪ least recently used, most recently used

Write Policy

When should writes update lower levels of memory hierarchy?

▪ write back, write through, write allocate, no write allocate

20

Blocks

21

00000000

00001000

00010000

00011000

Memory
(byte)

address

00010010

Divide address space into fixed-size aligned blocks.

power of 2

full byte address

Block ID

address bits - offset bits

offset within block

log2(block size)

Example: block size = 8

block

0

block

1

block

2

block

3

00010001
00010010
00010011
00010100
00010101
00010110
00010111

...

Cache starts empty.

Access (address, hit/miss) stream:

(0xA, miss), (0xB, hit), (OxC, miss)

What could the block size be?

Cache size puzzle
Cache starts empty.

Access (address, hit/miss) stream:

(0xA, miss), (0xB, hit), (OxC, miss)

22

ex

Cache size puzzle
Cache starts empty.

Access (address, hit/miss) stream:

(0xA, miss), (0xB, hit), (OxC, miss)

What could the block size be?

23

block size >= 2 bytes block size < 8 bytes

ex

1. First, convert the hex to integers

2. Remember that blocks must be aligned to the block size

3. Hint: there are two possible block sizes!

24

Placement policy

25

00

01

10

11

Index
Cache

S = # slots = 4

Small, fixed number of block slots.

Large, fixed number of block slots.

Memory Mapping:

index(Block ID) = ???Block ID

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

optional Placement: direct-mapped

26

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory
Block ID

Cache

S = # slots = 4

(easy for power-of-2 block sizes...)

Mapping:

index(Block ID) = Block ID mod S

optional

Placement: mapping ambiguity?

27

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory

Which block is in slot 2?

Block ID

Cache

S = # slots = 4

Mapping:

index(Block ID) = Block ID mod S

optional Placement: tags resolve ambiguity

28

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory

Block ID bits not used for index.

Block ID

Tag Data
00

11

01

01

Cache

S

Mapping:

index(Block ID) = Block ID mod S

optional

Example memory hierarchy

29

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:

32 KB,

Access: 4 cycles

L2 unified cache:

256 KB

Access: 10-20 cycles

L3 unified cache:

8 MB

Access: 40-100 cycles

Block size: 64 bytes for
all caches.

slower, but

more likely

to hit

Typical laptop/desktop processor
(c.a. 2020s)

Software caches
Examples

File system buffer caches, web browser caches, database caches,
network CDN caches, etc.

Some design differences

Often use complex replacement policies

Not necessarily constrained to single “block” transfers

30

Cache-friendly code
Locality, locality, locality.

Programmer can optimize for cache performance

Data structure layout

Data access patterns

Nested loops

Blocking / tiling

All systems favor “cache-friendly code”

Performance is hardware-specific

Generic rules capture most advantages

Keep working set small (temporal locality)

Use small strides (spatial locality)

Focus on inner loop code

31

Example: Matrix Multiplication

32

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k]*b[k*n + j];

}

i

j

memory access pattern?

optional

Cache Miss Analysis
Assume:

Matrix elements are doubles

Cache block = 64 bytes = 8 doubles

Cache size C is much smaller than n

First iteration:

n/8 + n = 9n/8 misses 
(omitting matrix c)

Afterwards in cache: 
(schematic)

33

*=

n

*=

8 wide

n/8 misses
…

n m
isses

each item in column in
different cache line

spatial locality:

chunks of 8 items in a row

 in same cache line

optional Cache Miss Analysis
Assume:

Matrix elements are doubles

Cache block = 64 bytes = 8 doubles

Cache size C is much smaller than n

Other iterations:

Again: 
n/8 + n = 9n/8 misses 
(omitting matrix c)

Total misses:

9n/8 * n2 = (9/8) * n3

34

n

*=

8 wide

once per element

optional

Blocked Matrix Multiplication

35

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i1++)

for (j1 = j; j1 < j+B; j1++)

for (k1 = k; k1 < k+B; k1++)

c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*
c

=

Block size B x B

optional Cache Miss Analysis

36

*=

*=

Block size B x B

n/B blocks

Assume:

Cache block = 64 bytes = 8 doubles

Cache size C << n (much smaller than n)

Three blocks fit into cache: 3B2 < C

First (block) iteration:

B2/8 misses for each block

2n/B * B2/8 = nB/4 
(omitting matrix c)

optional

Cache Miss Analysis
Assume:

Cache block = 64 bytes = 8 doubles

Cache size C << n (much smaller than n)

Three blocks fit into cache: 3B2 < C

Other (block) iterations:

Same as first iteration

2n/B * B2/8 = nB/4

Total misses:

nB/4 * (n/B)2 = n3/(4B)

37

*=

Block size B x B

n/B blocks

optional Summary: blocking/tiling

No blocking:	 (9/8)	* n3 1.1n3

Blocking:	 1/(4B)	* n3 0.1-0.3 n3

≈
≈

38

Modern machine learning/scientific computing frameworks leverage this!
Including blocking/tiling on GPUs. Often, with specific matrix multiply units.

Reason for dramatic difference:

Matrix multiplication has inherent temporal locality:

Input data: 3n2, computation 2n3

Every array element used O(n) times!

But program has to be written properly

If B = 8 difference is 4 * 8 * 9 / 8 = 36x

If B = 16 difference is 4 * 16 * 9 / 8 = 72x

39

typedef struct {
 int vel[3];
 int acc[3];
} point;

void clear1(point *p, int n) {
 int i, j;
 for (i=0; i<n; i++){
 for (j=0; j<3; j++) {
 p[i].vel[j] = 0;
 p[i].acc[j] = 0;
 }
 }
}

void clear2(point *p, int n) {
 int i, j;
 for (i=0; i<n; i++){
 for (j=0; j<3; j++)
 p[i].vel[j] = 0;
 for (j=0; j<3; j++)
 p[i].acc[j] = 0;
 }
}

void clear3(point *p, int n) {
 int i, j;
 for (j=0; j<3; j++){
 for (i=0; i<n; i++)
 p[i].vel[j] = 0;
 for (i=0; i<n; i++)
 p[i].acc[j] = 0;
 }
}

#define N 100
point p[N];

Exercise: order these 3 functions by locality ex

