WELLESLEY
CS 240

Foundations of Computer Systems

Memory Hierarchy
and Cache

Memory hierarchy
Cache basics
Locality
Cache organization
Cache-aware programming

https://cs.wellesley.edu/~cs240/

'-

When someone says "clear your browser's cache", what does that do?

Nobody has responded yet.

Hang tight! Responses are coming in.

.. Start the presentation to see live content. For screen reen. Get help at poll

Applicatio
Programming Language

Software

Operating System

Instruction Set Architecture

Microarchitecture
Digital Logic

N’/

Compiler/Interpreter

ces (transistors, etc.)
Solid-State Physics

Hardware

Examples: Nvidia documentation

“CUDA., a general purpose parallel computing platform and
programming model that leverages the parallel compute engine in
NVIDIA GPUs to solve many complex computational problems in a

more efficient way than on a CPU.”
- Nvidia CUDA C++ Programming Guide

L1 Cache L1 Cache.

| o
Cat
——— "
13 Cache BLOCK_SIZE-1.

L2 Cache

BLOCK_SIZE-1

o col

E

BLOCK_SIZE BLOCK_SIZE

Awidth

BLOCK_SIZE

B.width

BLOCK_SIZE BLOCK_SIZE

BLOCK_SIZE

Aheight

cPu GPU

Figure 1: The GPU Devotes More Transistors to Data Processing

Figure 9: Matrix Multiplication with Shared Memory

What are these caches? Why the complex matrix multiply?

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Expectation: How does execution time grow with SIZE?

Reality

int array[SIZE]; 50
fillArrayRandomly (array) ;
int s = 0;
37.5
for (int i = 0; 1 < 200000; i++) { o
: I . . o £
for (int j = 0; j < SIZE; j++) { | 2
s += arrayl[]J];
}
} TIME 12.5
0
0 2250 4500 6750 9000
SIZE SIZE
Processor-memory bottleneck Cache
English:
n. a hidden storage space for provisions, weapons, or treasures
Processor performance RO
doubled about) v. to store away in hiding for future use
every 18 months Bus bandwidth
evolved much slower)
Main .
cru | Reg Cache Computer Science:
Memory . .
n. a computer memory with short access time used to store
frequently or recently used instructions or data «—> Websites

Bandwidth: 256 bytes/cycle
Latency: 1-few cycles

~ Example

Solution: caches

Bandwidth: 2 Bytes/cycle
Latency: 100 cycles

v. to store [data/instructions] temporarily for later quick
retrieval

Also used more broadly in CS: software caches, file caches, etc.

General cache mechanics

CcPU Block: unit of data
in cache and memory.
(a.k.a. line)
Z7] Smaller, faster, more expensive.
Cache | 8 ” 9 ” 14 ” 31' Stores subset of memory blocks.
Data is moved
in block units
Memory [0 [2] 3] Larger, slower, cheaper.
| n ” 3 ” 5 ” = | Partitioned into blocks (lines).
[&][o J[2o][1]
[12][13][14][15]
900 00000OOCGOIOGOOSOINOGOIDS

(lines)

Cache hit

Cache

Memory

CPU
Request: 14
[&8 [o J[2a][3 |
Lo JL][2 13 |
2 [s [s J[7 |
[8 [9 J[20 J[11 |
[12][13][14][15]

1. Request data in block b.

2. Cache hit:
Block b is in cache.

Cache miss

CPU
Request: 12 1. Request data in block b.
h 2. Cache miss:
Cache | 8 ” 12 “ 14 ” 3 | block is not in cache
3. Cache eviction:
Request: 12 Evict a block to make room,
maybe store to memory.
Memory |[0 N[1 12 [3 || 4 cachefin:
[+ 0s s 171 Fetch block from memory,
[8][9 [10][11] store in cache.
[12][13][14 [15]
900 00000OOCGOIOGOOSOINOGOIDS

Replacement Policy:
which block to evict

Placement Policy:
where to put block in cache

Memory hierarchy

Why does it work?

large, slow,
power-efficient,

cheap

small, fast,
power-hungry,
expensive

explicitly
program-
controlled

Registers
<1KB,
0.25-0.5ns,
20K MBps

L1 cache (SRAM, on-chip)

)
O‘A <16MB, 0.5-25ns access,
@ 5K-15K MBps

L2 cache

(SRAM, on-chip)

(SRAM, off-chip)

L3 cache

AN

main memory (DRAM)
<~64MB, 80-250ns, 1K-5K MBps

persistent storage (hard disk, flash, over network, cloud, etc.)

GB/TB, >5M ns, 20-150 MBps

Locality: why caches work Locality #1: Basic iteration over array

sum = 0; What is stored in memory?
Programs tend to use data and instructions at addresses near or for (i =

i
equal to those they have used recently. e

return sum;

Temporal locality:
Recently referenced items are likely)

to be referenced again in the near future. El:l:l block

Spatial locality:
Items with nearby addresses are likely (2

to be referenced close together in time. I:D::l block

How do caches exploit temporal and spatial locality?

Locality #2: iteration over 2D array Locality #3: iteration over 2D array

row-major M x N 2D array in C row-major M x N 2D array in C

int sum_array rows (int a[M] [N])L/{ int sum_array cols(int a[M] [N]ﬁ({
int sum = 0; int sum = 0;
alo](o] afo][1] a[0][2] a[0][3]
for (int i = 0; i < M; i++) { Swapped for (int j = 0; j < N; j++) { alijio] a[jil - all2] - allE] -
for (int § = 0; j < N; j++) { loop order Q» for (int i = 0; i < M; it4) (|70 @ @R e
sum += a[i]l[3]; sum += a[i]l[3];
} }
} }
return sum; return sum;
} }

Locality #4

What is "wrong" with this code?
How can it be fixed?

int sum array 3d(int a[M][N][N]) {
int sum = 0;

for (int i = 0; 1 < N; i++4) {
for (int j = 0; J < N; Jj++) {
for (int k = 0; k < M; k++) {
sum += alk][i]1[]];
}

}

return sum;

Cost of cache misses
Miss cost could be 100 x hit cost.

99% hits could be twice as good as 97%. How?

Assume cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time:
97% hits: (0.97 * 1 cycle) + (0.03 * 100 cycles) = 3.97 cycles
99% hits: (0.93 * 1 cycle) + (0.01 * 100 cycles) = 1.93 cycles

hit/miss rates

Cache performance metrics

Miss Rate

Fraction of memory accesses to data not in cache (misses / accesses)
Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc.

Hit Time
Time to find and deliver a block in the cache to the processor.
Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

Miss Penalty
Additional time required on cache miss = main memory access time
Typically 50 - 200 cycles for L2 (trend: increasing!)

Cache organization

Block
Fixed-size unit of data in memory/cache

Placement Policy
Where in the cache should a given block be stored?

Replacement Policy
What if there is no room in the cache for requested data?
= least recently used, most recently used

Write Policy
When should writes update lower levels of memory hierarchy?
= write back, write through, write allocate, no write allocate

(byte)

address Memory
B l ocC kS 00000000
Divide address space into fixed-size aligned blocks. block
power of 2 0
Example: block size = 8 00001000
full byte address block
00010010 1
\ 00010000
; ; 00010001
Block ID offset within block 0001001 | piock

address bits - offset bits log,(block size) 00010100

00010101 | 2
00010110
00010111
00011000

block

Cache size puzzle
Cache starts empty.
Access (address, hit/miss) stream:

(OxA, miss), (0xB, hit), (OxC, miss)

What could the block size be?

= '
]
Cache size puzzle What are possible cache sizes here? @0
Cache starts empty.
Access (address, hit/miss) stream: 5
(OxA, miss), (0xB, hit), (OxC, miss)
4
Cache starts empty.
Access (address, hit/miss) stream:
8
(OxA, miss), (0xB, hit), (OxC, miss)
What could the block size be? 16
1. First, convert the hex to integers
2. Remember that blocks must be aligned to the block size
3. Hint: there are two possible block sizes! None of the above
23 .. Start the presentation to see live content. For screen sh: , share the . Get help at polls /i .-

Placement policy

Block ID
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

[optianall

Mapping:
index(Block ID) = 2??

S=#slots=4

Small, fixed number of block slots.

Large, fixed number of block slots.

Placement: direct-mapped

Block ID
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Nt

optionall
Mapping:

index(Block ID) = Block ID mod S

(easy for power-of-2 block sizes...)

Index
00
01
10
11

Cache

S=#slots=4

Placement: mapping ambiguity?

Block ID
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

optional
Mapping:

index(Block ID) = Block ID mod S

Cache
Index
00
01

10 S =#slots=4

Which block is in slot 2?

27

Placement: tags resolve ambiguity

Block ID
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

¢

Mapping:

index(Block ID) = Block ID mod S

Index
00
01
*10
11

Cache

Tag Data
00
11
01
01

Block ID bits not used for index.

Example memory hierarchy

Typical laptop/desktop processor

Processor package

L3 unified cache
(shared by all cores)

’ Main memory ‘

(c.a. 2020s)

L1 i-cache and d-cache:
32 KB,
Access: 4 cycles

L2 unified cache:
256 KB
Access: 10-20 cycles

L3 unified cache: <«
8 MB slower, but
Access: 40-100 cycles more likely
to hit
Block size: 64 bytes for
all caches.

Software caches

Examples

File system buffer caches, web browser caches, database caches,

network CDN caches, etc.

Some design differences

Often use complex replacement policies

Not necessarily constrained to single “block” transfers

Cache-friendly code

Locality, locality, locality.
Programmer can optimize for cache performance
Data structure layout
Data access patterns
Nested loops
Blocking / tiling
All systems favor “cache-friendly code”
Performance is hardware-specific

Generic rules capture most advantages
Keep working set small (temporal locality)
Use small strides (spatial locality)

Focus on inner loop code

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, 3, k;

for (i = 0; i < n; i++)
for (J = 0; 3 < n; j++)
for (k = 0; k k++

n
cli*n + j] += ali*n + kl*blk*n + j];

memory access pattern?

m

(:13)1’]’ . Z flikBkj-
k=1

Cache Miss Analysis

spatial locality:

chunks of 8 items in a row

Assume:
Matrix elements are doubles
Cache block = 64 bytes = 8 doubles
Cache size C is much smaller than n

in same cache line

each item in column in

different cache line

[optianall

Cache Miss Analysis

Assume:
Matrix elements are doubles
Cache block = 64 bytes = 8 doubles
Cache size Cis much smaller than n

Block size Bx B

n/8 misses n
First iteration: AN Other iterations: —_—A
n/8 +n =9n/8 misses i S Again: L] [
(omitting matrix c) = * 2 n/8 +n =9n/8 misses - %
@ (omitting matrix c)
8 wide
Afterwards in cache: = —
(schematic) Total misses:
= *
R
8 wide
33 once per element 34
Blocked Matrix Multiplication optional| Cache Miss Analysis optional
Assume:
c = (double *) calloc(sizeof (double), n*n);
/% Multiply n x n matrices a and b */ Cache block = 64 bytes = 8 doubles
VoL icoubie e, double Ty double Te, dnt n) Cache size C << n (much smaller than n)
i=0; 4 5 i4=] ..
forfoil@ Y05k n;+j}i)=8) Three blocks fit into cache: 3B2< C
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = il < i+B; il++) . . . n/B blocks
for (31 = 3; 31 < 3+B; jl++) First (block) iteration:
for (k1 = k; k1 < k+B; kl++) .
clil*n + j1] += a[il*n + k11*b[kl*n + j1]; B2/8 misses for each block | EEEEE N
! 2n/B * B2/8 = nB/4 =
i (omitting matrix c)
c a » H ?
[| |
= * [] Block size Bx B
] B [[] |] EEEEE =
i J

Cache Miss Analysis optional|

Assume:
Cache block = 64 bytes = 8 doubles
Cache size C << n (much smaller than n)
Three blocks fit into cache: 3B2< C

X . n/B blocks
Other (block) iterations: —_——
R -
Same as first iteration u T u
2n/B * B2/8 = nB/4 = * ;

. Block size Bx B
Total misses:

nB/4 * (n/B)2 = n3/(4B)

Summary: blocking/tiling

No blocking: (9/8)* n3 =~ 1.1n3 g :
Blocking: 1/(4B)* n? ~0.1-0.3 n3 g -
g

IfB=8 differenceis4*8*9/8 =36x . = 5

If B=16 differenceis4* 16 *9 /8 =72x i
Reason for dramatic difference: — i}

Matrix multiplication has inherent temporal locality: S|

Input data: 3n2, computation 2n3 D D

Every array element used O(n) times!
But program has to be written properly

Figure 9: Matrix Multiplication with Shared Memory

Modern machine learning/scientific computing frameworks leverage this!
Including blocking/tiling on GPUs. Often, with specific matrix multiply units.

Exercise: order these 3 functions by locality

typedef struct { #define N 100
int vel[3]; point p[N];
int acc[3];

} point;

void clearl(point *p, int n) { void clear2(point *p, int n) { void clear3(point *p, int n) {

int i, i; int i, i; int i, j;
for (i=0; i<n; i++){ for (i=0; i<n; i++){ for (3=0; 3j<3; j++){
for (j=0; j<3; j++) { for (j=0; j<3; j++) for (i=0; i<n; i++)
pli].vel[j] = 0; pli].vel[j] = 0; pli].vel[j] = 0;
plil.acc[]j] = 0; for (j=0; j<3; j++) for (i=0; i<n; i++)
} pli].acc[j] = 0; plil.acc[j] = 0;
} } }

