WELLESLEY
CS 240
Foundations of Computer Systems

Representing
Data Structures

Multidimensional arrays

Outline

Goal: understand how we represented structured data in C and x86

e Arrays in x86
¢ Array indexing
* Arrays of pointers to arrays
¢ 2-dimensional arrays (defer details to video)

e Cstructs (simpler version of objects)

Cstructs . . .
¢ Overview and accessing fields
e Alignment
e LinkedList example
https://cs.wellesley.edu/~cs240/

C: Array layout and indexing
int valls]; |
+0 +4 +8 +12 +16

Write x86 code to load val[i] into $eax.

Recall:
1. Assume:
 Array layout will be contiguous . Base address of val is in $rdi
block of memory . iisinSrsi
* The base address will be
aligned based on the element
type: here, a multiple of 4
2. Assume:
For: T a[N] - Base address of val is 28 ($rsp)
Addressof a[i] is: . iisin srex

a + i * sizeof(T)

[
|
Which expression correctly loads val[i] into %rax? Assyme val is in %rdi and i is in %rsi.

movq (%rsi,%rdi,4), %rax

movq (%rdi,%rsi,4), %rax

long val(4); NEEEE N -
+0 8 16 24 movq (%rdi,%rsi,8), %rax

movq (%rsi,%rdi,8), %rax

None of the above

o Start the presentation to see live content. For screen sh . Get help at.

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

C: Arrays of pointers to arrays of ... (e C: Arrays of pointers to arrays in x86
Srdi $rsi $rdx
int** zips = (int**)malloc(sizeof (int*)*3); |C void copyfromleft (int** zips, long i, long j) {
zips[0] = (int*)malloc (sizeof (int)*5);) zipCodes [i][J] = zipCodes[i][] - 1];
1nt* zip0 = zips[0]; ;
zip0[0] = 0; icopyleft(zips, 1, 3)
zips([0] [1] = 2;
zips[0] [2] = 4; zips — P — [NUIL]
zips[0] [3] = 8; \|
Fibe(0)(4] - 1, \ EI B WA W
Goal: translate to x86, using 0T 2T 417 8T11]
. two scratch registers
z1ps § .
/ %$rax, 3ecx (why 32 bits?)
[- | Fid | 777 | 1.Putzips[i] inareg
2. Access element [j-1]
[0OT 2T a4T7T8T7T 11 3. Set element []
N N N 4. Return (nothing)
int[][] zips = new int[3][]; Java
zips[0] = new int[5] {0, 2, 4, 8, 1};
C: Arrays of pointers to arrays: Pros/Cons Alternative: row-major nested arrays

| - [NULL] 0

i — 1 2 3 4
zips o 1 \\||NULL| —] o \|9|4|7|5|8|)
\\1 9 [41 715T181] I 94171518

T

0[T2T4T8T 1] 0T 2T42T38]

Single contiguous block of memory

Pros: Pros:
* Flexible array lengths e Accessing nested elements now a single memory operation!
* Different elements can be different lengths « Calculations can be done ahead of time, via arithmetic

¢ Lengths can change as the program runs
e Representation of empty elements saves space Cons:

¢ Less space efficient depending on the shape of the data

Cons: « Need to be careful with our order of indexing!
¢ Accessing a nested element requires multiple memory operations

a[0][0] + - -

C: Row-major nested arrays

. .

a[0] [C-1]

C: Strange array indexing examples

int seal4][5];

a[R-1][0] « + +a[R-1][C-1] 9l8|1]9|5|9|8|1|0|5]|9|8|1]|0|3]|9]|8 115
int al[R]I[C];
76 96 116 136 156
a a a a a a
[0] |« o o | [O] | (1] | « « « | (1] . e . [R-1]| « « « |[R-1]
[0] tc-11| 0 [c-1] 10] lc-1] Reference Address Value
sea[3][3]
Suppose a's base address is A. sea[2] [5]
sea(2] [-1]
&al[il[j] is A + Cxsizeof(int)xi + sizeof (int) xj seal4] [-1]
(regular unscaled arithmetic) sea[0][19]
seal[0] [-1]
int* b = (int*)a; // as larger 1D array -
C does not do any bounds checking.
§a[i][3] == &b[C*i + 3] Row-major array layout is guaranteed.
struct rec { Base address
C structs C structs int 17
int a[3]1; lila | o |
int* p;
e Offset: +0 +4 +16 +24

Like Java class/object, without methods.
Models structured, but not necessarily list-like, data.

Combines other, simpler types.

struct point { struct student {
int xcoordinate; int classyear;
int ycoordinate; int id;

}i char* name;

}i

}i
Like Java class/object Memory Layout

without methods. struct rec x;

struct rec y;

&x

Compiler determines: x.1i = 1;
« Total size x.a[l] = 2;
« Offset of each field X.p = &(x.1);
X
1 2
y

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
« Offset of each field

struct rec {
int i;
int a[3];
int* p;

}i

struct rec x;
struct rec y;
x.i=1;
x.a[l] = 2;
x.p = &(x.1);

Base address

I i |a | p |
Offset: +0 +4 +16 +24
Memory Layout

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
« Offset of each field

struct rec {
int i;
int a[3];
int* p;

i

struct rec x;
struct rec y;
x.i=1;
x.a[l] = 2;
X.p = &(x.1);

Base address

\
EE N
Offset: +0 +4 +16 +24
Memory Layout

X X
// copy full struct 1 2 &X // copy full struct 1 2 &X
Yy = x; y = x;
Y struct rec* z; v
1 2 &X z = &y; 1 2 &x
4
&y
14
struct rec { Base address struct rec { Base address
C structs int i C structs int iy
1 o [T=¢] o [__T=]
. 126 Offset: +0 +4 16 +24) P Offset: +0 +4 T 1204

Like Java class/object
without methods.

Compiler determines:
« Total size
« Offset of each field

}i

struct rec x;
struct rec y;
X.1 = 1;
x.al[l] = 2;
X.p = &(x.1);

// copy full struct
vy =%

struct rec* z;

z = &y;
(*z) .it++;

// same as:
/1 z=>it+ —

Memory Layout

X
1 2 &x
Yy
:::::::::::’ 1 2 & X
Z
&y

Like Java class/object
without methods.

Compiler determines:
« Total size
« Offset of each field

}i

struct rec x;
struct rec y;
Xx.1 =1;
x.al[l] = 2;
X.p = &(x.1);

// copy full struct
vy =%

struct rec* z;
zZ = &Yy;
(*z) .it++;

// same as:
/1 z=>it+ —

Memory Layout

X
1 2 &x
Yy
:::::::::::‘ 2 2 &X
Z
&y

C: Accessing struct fields

struct student {
int classyear;

struct student ({
int classyear;

C: Accessing struct fields

}i

int id;

char*

name;

Example: traversing a list of struct pointers

int id;
char* name

}i

;

Example: traversing a list of struct pointers

// Given a null-terminated list of pointers to students, // Given a null-terminated list of pointers to students
// return the name of the student with a given ID, or null // return the name of the student with a given ID, or null
// if there is no student with that ID. // if there is no student with that ID.
char* getStudentNameWithId(struct student *s[], int id) { char* getStudentNameWithId (struct student *s[], int id) {
struct student **curr = s; struct student **curr = s;
while (*curr) {
if ((*curr)->id == id)
return (*curr)->name;
curr++;
}
} return NULL;
}
C: Accessing struct field C: Struct field alignment
struct rec { +444%q . . . H
imie g z I index Alignment is especially ~ Unaligned Data
int al3]; . 7
die® o , important for structs [<] v i
bi - |a | P | p p+l p+9 p+13
0 4 16 24
int get_i plus_elem(struct rec* r, int index) ({ StZESE i% { Ahgned Data
: EGituEm 225l o SPa|Hnelry|f double v; Primitive data type requires K bytes
)*l;? i Address must be multiple of K
movl 0(%rdi),%eax # Mem[r+0] : C: align every struct field accordingly.
addl 4(%rdi,%rsi,4),%eax. # Mem[r+4*index+4] Defines new struct type

retq

and declares variable p

<] | v

I

of type struct S1* ”

p+0 J/ p+8
internal fragmentation

Multiple of 8

pt+l6 p+20

Multiple of 4

C: Struct packing

Put large data types first:

struct S1 { struct S2 {
char c; double v;
double v; int i;
int 1i; char c;

} * ps programmer Poroa;

<] v 1

p+0 p+8 p+l6 pt+20
v i |c|
q+0 q+12 qX3

but actually...

C: Struct alignment (full)

Base and total size must align largest internal primitive type.
Fields must align their type's largest alignment requirement.

struct S1 {
char c;
double v;
int 1i;
* .
} pi “external fragmentation”
Y
T] |
p+0 / p+8 p+l6 p+20 p+24
“internal fragmentation”
“external fragmentation”
struct S2 {
\\ double v;
| - El |c| | int i;
char c;
q+0 g+8 q+l2 gt+l6 }o*oq;

Array in struct

struct rec {
int i;
int a[3];
int* p;

}i

Struct in array

struct S2 {
double v;
int 1i;
char c;
a[10];

HE

a+48

[o |
Oftset: 0 4 16 24
atle a+32
[al1] [al2] |
v | & [c[r]
atle atz24 a+28 a+32

C: typedef

// give type T another name: U
typedef T U;

// struct types can be verbose
struct Node { ... };

struct Node* n = ..;

// typedef can help
typedef struct Node |

Linked Lists

typedef

next|

Linked Lists

struct Node {
struct Node* next;
int value;

} Node;

Implement append in x86:

value|

next|

value 4

next NULL

value 6

void append (Node* head, int x)
// assume head != NULL

Node* cursor = head;

// find tail

while (cursor->next != NULL)
cursor = cursor->next;

}

/ erro

/ for x
cursor->next =
n->next = NULL;
n->value = x;

{

{

typedef next
struct Node { valueﬁ append: N
struct Node* next; “—next| g PN 6rb?
int value; movl %$esi, %ebp
} Node; value 4 pushg %rbx
D movqg %rdi, %rbx
Implement append in x86: val| subg 38, %rsp
jmp L3
void append (Node* head, int x) { .L6:
assume head != NULL movqg %$rax, %rbx
Node* cursor = head; .L3:
find tail movqg (%rbx), %rax
while (cursor->next != NULL) { testqg %$rax, %rax
cursor = cursor->next; jne .L6
}
e movqg %rax, (%rbx)
/ for x86 K movg $0, (%rax)
cursor->next = n; movl %ebp, 8(%rax)
n->next = NULL; addg $8, %rsp
n->value = x; popg S%rbx
} Extra fun: try a recursive version too! popg $rbp
ret

Struct practice problem

struct s {
char *a;
short b;
ime ~ep
char d;
int e;

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

Struct practice problem

char f;

Recall: a short is
2 bytesin C

2. Modify your picture to show how much space a single element of this
struct would take if used as an element of an array (e.g., the total size).

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

Recall: a short is
2 bytesin C

struct s { 1. Draw a picture of how this struct is laid out in memory, labeling the
char *a; byte offset of each field (starting with a at offset +0);
ey Ce I - N - (7
char d; +0 +8 +10 +16 +24,+25 +28 +32,+33
int e; 2. Modify your picture to show how much space a single element of this
. char £; struct would take if used as an element of an array (e.g., the total size).

‘ a ‘b IIIII c

+0 +8 +10 +16

I - [f]

+24,+25 +28 +32,+33 +40

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

[a T <c T e [blelf
+0 +8 +16 +20 +24

