WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Representing
Data Structures

Multidimensional arrays
C structs

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Outline

Goal: understand how we represented structured data in C and x86

e Arrays in x86

e Array indexing

e Arrays of pointers to arrays

e 2-dimensional arrays (defer details to video)
e Cstructs (simpler version of objects)

e Overview and accessing fields

e Alighment

e LinkedList example

C: Array layout and indexing

int val(s]; | N
+0 +4 +8 +12 +16

Write x86 code to load val[i1i] into $eax.

Recall:
1. Assume:
e Array layout will be contiguous . Base address of val isin $rdi
block of memory . iisin $rsi
e The base address will be
aligned based on the element
type: here, a multiple of 4
2. Assume:

For: T a[N]

- Base address of val is 28 ($rsp)
Address of a[i] is:

e 1ISIN $rCcx

a + 1 * sizeof(T)

Which expression correctly loads val[i] into %rax? Assyme val is in %rdi and iis in %rsi.

movq (%rsi,%rdi,4), %rax

movq (%rdi,%rsi,4), %rax

long val(4]; [N L
+0 8 16 24 movq (%rdi,%rsi,8), %rax

movq (%rsi,%rdi,8), %rax

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

C: Arrays of pointers to arrays of ...

1nt** zips = (1nt**)malloc(sizeof (1nt*) *3);
z1ps[0] = (int*)malloc(sizeof (1nt) *5);
int* zip0 = zips[0];
zip0[0] = 0;
z1ps[0] [1] = 2;
z1ps[0] [2] = 4;
z1ps[0] [3] = 8;
z1ips[0] [4] = 1;
Z1PS /
int[][] zips = new 1int[3][]; Java

[
zips[0] = new 1int[5] {0, 2, 4, 8, 1};

C: Arrays of pointers to arrays in x86

Srdi $rsi Srdx

vold copyfromleft (int** zips, long 1, long 7j) {
zipCodes[1] []J] = zipCodes[i][] - 1]

zips — [. 1 . 1 WU
9 [4 [7 [A7 8
0 [2 [4181

Goal: translate to x86, using
two scratch registers

$rax, secx (why 32 bits?)

1. Putzips[1] Inareg
2. Access element [§-1]

3. Setelement [7]
4. Return (nothing)

C: Arrays of pointers to arrays: Pros/Cons

zips — [. 1 . T WU
{9 1 417158
{0 [21418171

Pros:
e Flexible array lengths
e Different elements can be different lengths
e Lengths can change as the program runs

e Representation of empty elements saves space

cons:

e Accessing a nested element requires multiple memory operations

Alternative: row-major nested arrays

0

1 2 3 4
—] o | o | NUL .
01 2 [418 11
0 1 2] 438] 1

Single contiguous block of memory

Pros:
e Accessing nested elements now a single memory operation!

e Calculations can be done ahead of time, via arithmetic

Cons:
e Less space efficient depending on the shape of the data
e Need to be careful with our order of indexing!

C: Row-major nested arrays al0][0] + + + a[0][C-1]

a[R-1][0] » +« a[R-1][C-1]

a a a
[0] (0] | [1]
[O] [C=-1]| [O]

Suppose a's base address is A.

&al[1][3J] 1Is A + Cxsizeof (1nt)x1 + sizeof (int) xj
(reqular unscaled arithmetic)

int* b = (int*)a; // Treat as larger 1D arravy

&ali1] [jJ] == &b[C*1 + 7]

C: Strange array indexing examples

int seald4][5];

Reference Address Value
seal[3] [3]
seal[Z2] [5.
seall] [-
seald] [-1]
sea[0][19
sea[0] [-1.

C does not do any bounds checking.
Row-major array layout is guaranteed.

C structs

Like Java class/object, without methods.
Models structured, but not necessarily list-like, data.

Combines other, simpler types.

struct point struct student {
1nt xcoordinate; int classyear;
int ycoordinate; int 1d;

' char* name;

by

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
o Offset of each field

struct rec {
int 1;
int al[3];
int* p;

by

struct rec x;
struct rec vy;

X.1l = 1;
X.all] = 2;
X.p = &(X°l)l

Base address

_n

Offset: +0 +4 +16
Memory Layout

& X

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
o Offset of each field

struct rec {
int 1;
int al[3];
int* p;

by

struct rec x;
struct rec y;
X.1 = 1;
xX.all] = 2;
X.p = &(x.1);

// copy full struct
y = X;

Base address

_n

Offset: +0 +4 +16
Memory Layout

& X

& X

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
o Offset of each field

struct rec {
int 1;
int al[3];
int* p;

by

struct rec x;
struct rec y;
X.1 = 1;
xX.all] = 2;
X.p = &(x.1);

// copy full struct
Yy = Xy

struct rec* z;
z = &Y,

Base address

_n

Offset: +0 +4 +16
Memory Layout

X
1 / & X
Y
1 / &X
7

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
o Offset of each field

struct rec {
int 1;
int al[3];
int* p;

by

struct rec Xx;
struct rec y;

X.1 = 1;
xX.all] = 2;
X.p = &(x.1);

// copy full struct
Yy = Xy

struct rec* z;
zZ = &Yy,
(*z) .1++;

// same as:

// z->1++

Base address

_n

Offset: +0 +4 +16
Memory Layout

X
1 / & X
Y
1 / &X
7

C structs

Like Java class/object
without methods.

Compiler determines:
« Total size
o Offset of each field

struct rec {
int 1;
int al[3];
int* p;

by

struct rec Xx;
struct rec y;

X.1 = 1;
xX.all] = 2;
X.p = &(x.1);

// copy full struct
Yy = Xy

struct rec* z;
zZ = &Yy,
(*z) .1++;

// same as:

// z->1++

Base address

_n

Offset: +0 +4 +16
Memory Layout

X
1 / & X
Y
7 / &X
7

C: Accessing struct fields

struct student {
int classyear;

int id; Example: traversing a list of struct pointers
char* name;

¥

// Given a null-terminated list of pointers to students,

// return the name of the student with a given ID, or null

// 1f there is no student with that ID.

char* getStudentNameWithId (struct student *s[], 1nt 1d) {
struct student **curr = s;

C: Accessing struct fields

struct student {
int classyear;
int 1d;
char* name;

¥

Example: traversing a list of struct pointers

// Given a null-terminated list of pointers to students,

// 1f there is no student with that ID.
char* getStudentNameWithId (struct student *s[], 1nt 1d)

struct student **curr = s;
while (*curr) {
1f ((*curr)->1d == 1d)
return (*curr)->name;
curr—++;

}
return NULL;

// return the name of the student with a given ID, or null

{

18

C: Accessing struct field

struct rec { r r+4+4*index
int 1;
int al[3]; l v
int* p; .
g HE
0O 4 16 24

int get 1 plus elem(struct rec* r, 1int index) {
return r->1 + r->a[index];

J

movl 0 (%rdi), $eax # Mem[r+0]
addl 4 (%rdi, $rsi,4),%eax. # Mem[r+4*index+4]

retq

C: Struct field alighnment

Alignment is especially ~ Unaligned Data

important for structs

p ptl p+9 p+13
struct S1 { Aligned Data
char c; o .
double v: Primitive data type requires K bytes
} *lgF e Address must be multiple of K
C: align every struct field accordingly.

Defines new struct type

and declares variable p E T I

oftype struct S1%* p_l_O / p_|_8 p+16 p‘|‘20

internal fragmentation

Multiple of 8 Multiple of 4

C: Struct packing

struct S1 {
char c;
double v;
int 1;

b* P

Put large data types first:

programmer bora;

qg+12

struct S2 {
double v;
int 1;
char c;

X

but actually...

C: Struct alignment (full)

Base and total size must align largest internal primitive type.
Fields must align their type's largest alignment requirement.

struct S1 {
char c;
double v;
int 1;

b* P

“internal fragmentation”
“external fragmentation”

N\
I S S]

q+0 qg+8 qtl?2 gq+l6

“external fragmentation”

struct S2 {
double v;
int 1;
char c;

S -

Array in struct

struct rec {
int 1;
int al[3];
int* p;

}y

Struct in array

struct S2 {
double v;
int 1;
char c¢;

} a[l0];

Oftset:

atle6

e [e

4

at+24

16

24

at28

atl32

a+48

C: typedef

// give type T another name: U
typedef T U;

// struct types can be verbose
struct Node { ... };

struct Node* n = ..;

// typedef can help
typedef struct Node |

} Node;

Node* n = ...;

24

Linked Lists i TN

next

typedet

struct Node* next;
int value;
} Node;

Implement append in x86:

struct Node { value

next

value

vold append (Node* head, 1int Xx)
// assume head != NULL
Node* cursor = head;

// find tail
while (cursor->next '= NULL)

cCursor = cursor->next;

}

// error checking omitted
// for x86 simplicity
cursor->next = n;

n->next = NULL;

n->value = x;

next

value

NULL

25

Linked Lists

typedet
struct Node {
struct Node* next;

int value;
} Node;

Implement append in x86:

value

next

next

value

vold append (Node* head, 1int Xx)
// assume head NULL
Node* cursor = head;

// find tail

while (cursor->next '= NULL)

cCursor = cursor->next;

}

// error checking omitted
// for x86 simplicity
cursor->next = n;

n->next = NULL;

n->value = x;

} Extra fun: try a recursive version too!

¢

val

append:
pushqg
mov .,
pushqg
movq
subqg
Jm

.L6:
movqg

.L3:
movq
testq
Jne

movq
movq
movl
addqg
poprdg
poprd
ret

srbop

%es1, %sebp

Zrbx

srdi, S3rbx

S8, %rsp

.L3

srax, %rbx
Srbx) , %Srax
srax, Srax

. L6

srax, (3rbx)
SO0, (%rax)
%ebp, 8 (%rax)
S8, %rsp
Zrbx

srbp

26

Struct practice problem

struct s { 1. Draw a picture of how this struct is laid out in memory, labeling the
char *aj byte offset of each field (starting with a at offset +0);
short b;
int *c;
char d;
int e; 2. Modify your picture to show how much space a single element of this
s char f; struct would take if used as an element of an array (e.g., the total size).

Recall: a short is 3. Rearrange the fields of the struct to minimize wasted space. Draw the
2 bytes in C new offsets and the total size.

Struct practice problem

struct s {
char *a;
short Db;
int *c;
char d;
int e;
char f£;

o

Recall: a short is
2 bytes in C

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

a2 (o - [- f

+0 +8 +10 +16 +24 ,+25 +28 +32,+33

2. Modify your picture to show how much space a single element of this
struct would take if used as an element of an array (e.g., the total size).

a2 (o - [- f

+0 +8 +10 +16 +24 ,+25 +28 +32,+33 +40

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

+0 +8 +16 +20 +24

28

