
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Representing 
Data Structures

Multidimensional arrays

C structs

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Outline

• Arrays in x86

• Array indexing

• Arrays of pointers to arrays

• 2-dimensional arrays (defer details to video)

• C structs (simpler version of objects)

• Overview and accessing fields

• Alignment

• LinkedList example

2

Goal: understand how we represented structured data in C and x86

C: Array layout and indexing

Write x86 code to load val[i] into %eax.

+0 +4 +8 +12 +16
int val[5];

3

movl (%rdi, %rsi, 4), %eax

movl 28(%rsp, %rcx, 4), %eax

1. Assume:

● Base address of val is in %rdi

● i is in %rsi

2. Assume:

● Base address of val is 28(%rsp)

● i is in %rcx

ex

Recall:

• Array layout will be contiguous
block of memory

• The base address will be
aligned based on the element
type: here, a multiple of 4

For: T a[N]

Address of a[i] is:

a + i * sizeof(T)

4

C: Arrays of pointers to arrays of …
int** zips = (int**)malloc(sizeof(int*)*3);

...

zips[0] = (int*)malloc(sizeof(int)*5);

...

int* zip0 = zips[0];

zip0[0] = 0;

zips[0][1] = 2;

zips[0][2] = 4;

zips[0][3] = 8;

zips[0][4] = 1;

5

0 2 4 8 1

zips

??? ???

int[][] zips = new int[3][];

zips[0] = new int[5] {0, 2, 4, 8, 1};

Java

reminder

C

void copyfromleft(int** zips, long i, long j) {

 zipCodes[i][j] = zipCodes[i][j - 1];

}

C: Arrays of pointers to arrays in x86

6

0 2 4 8 1

zips NULL
9 4 7 5 8

copyfromleft:

 movq (%rdi,%rsi,8), %rax # %rax ← zips[i]

 movl -4(%rax,%rdx,4), %ecx # %ecx ← %rax[j-1]

 movl %ecx, (%rax,%rdx,4) # %rax[j] ← %ecx

 retq

copyleft(zips, 1, 3)

7

ex

Goal: translate to x86, using
two scratch registers

 %rax, %ecx (why 32 bits?)

1. Put zips[i] in a reg

2. Access element [j-1]

3. Set element [j]

4. Return (nothing)

%rdi %rsi %rdx

C: Arrays of pointers to arrays: Pros/Cons

7

Pros:

• Flexible array lengths

• Different elements can be different lengths

• Lengths can change as the program runs

• Representation of empty elements saves space

Cons:

• Accessing a nested element requires multiple memory operations

0 2 4 8 1

zips NULL
9 4 7 5 8

Alternative: row-major nested arrays

8

Pros:

• Accessing nested elements now a single memory operation!

• Calculations can be done ahead of time, via arithmetic

Cons:

• Less space efficient depending on the shape of the data

• Need to be careful with our order of indexing!

0 2 4 8 1

NULL
9 4 7 5 8 9 4 7 5 8

0 2 4 8 1

0
0
1

1 2 3 4

Single contiguous block of memory

C: Row-major nested arrays

9

int a[R][C];

• • •
a

[0]

[0]

a

[0]

[C-1]

• • •
a

[1]

[0]

a

[1]

[C-1]

• • •
a

[R-1]

[0]

a

[R-1]

[C-1]

• • •

a[0][0] a[0][C-1]

a[R-1][0]

• • •

• • • a[R-1][C-1]

•

•

•

•

•

•

&a[i][j] is A + C×sizeof(int)×i + sizeof(int)×j

	 	 	 	 	 	 	 	 (regular unscaled arithmetic)

int* b = (int*)a; // Treat as larger 1D array

&a[i][j] == &b[C*i + j]

Suppose a's base address is A.

C: Strange array indexing examples

Reference Address	 	 Value	

sea[3][3]	

sea[2][5]	

sea[2][-1]	

sea[4][-1]	

sea[0][19]	

sea[0][-1]	

C does not do any bounds checking.

Row-major array layout is guaranteed.

10

int sea[4][5];

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

76+20*3+4*3 = 148	 1	

	76+20*2+4*5 = 136	 9	

	76+20*2+4*-1 = 112	 5	

	76+20*4+4*-1 = 152	 5	

	76+20*0+4*19 = 152	 5 	

	76+20*0+4*-1 = 72	 ??	

ex

struct student {

 int classyear;

 int id;

 char* name;

};

C structs

11

struct point {

 int xcoordinate;

 int ycoordinate;

};

Like Java class/object, without methods.

Models structured, but not necessarily list-like, data.

Combines other, simpler types.

struct rec {

 int i;

 int a[3];

 int* p;

};

x
1 2 &x

y

C structs

Like Java class/object

without methods.

Compiler determines:

• Total size

• Offset of each field

i a p

+0 +4 +16 +24Offset:

Base address

Memory Layout

12

struct rec x;

struct rec y;

x.i = 1;

x.a[1] = 2;

x.p = &(x.i);

struct rec {

 int i;

 int a[3];

 int* p;

};

struct rec x;

struct rec y;

x.i = 1;

x.a[1] = 2;

x.p = &(x.i);

// copy full struct

y = x;

x
1 2 &x

1 2 &x
y

i a p

+0 +4 +16 +24Offset:

Base address

Memory Layout

13

C structs

Like Java class/object

without methods.

Compiler determines:

• Total size

• Offset of each field

struct rec {

 int i;

 int a[3];

 int* p;

};

struct rec x;

struct rec y;

x.i = 1;

x.a[1] = 2;

x.p = &(x.i);

// copy full struct

y = x;

struct rec* z;

z = &y;

x
1 2 &x

1 2 &x
y

&y
z

i a p

+0 +4 +16 +24Offset:

Base address

Memory Layout

14

C structs

Like Java class/object

without methods.

Compiler determines:

• Total size

• Offset of each field

struct rec {

 int i;

 int a[3];

 int* p;

};

struct rec x;

struct rec y;

x.i = 1;

x.a[1] = 2;

x.p = &(x.i);

// copy full struct

y = x;

struct rec* z;

z = &y;

(*z).i++;

// same as:

// z->i++

x
1 2 &x

1 2 &x
y

&y
z

i a p

+0 +4 +16 +24Offset:

Base address

Memory Layout

15

C structs

Like Java class/object

without methods.

Compiler determines:

• Total size

• Offset of each field

struct rec {

 int i;

 int a[3];

 int* p;

};

struct rec x;

struct rec y;

x.i = 1;

x.a[1] = 2;

x.p = &(x.i);

// copy full struct

y = x;

struct rec* z;

z = &y;

(*z).i++;

// same as:

// z->i++

x
1 2 &x

2 2 &x
y

&y
z

i a p

+0 +4 +16 +24Offset:

Base address

Memory Layout

16

C structs

Like Java class/object

without methods.

Compiler determines:

• Total size

• Offset of each field

// Given a null-terminated list of pointers to students,

// return the name of the student with a given ID, or null

// if there is no student with that ID.

char* getStudentNameWithId(struct student *s[], int id) {

 struct student **curr = s;

}

C: Accessing struct fields

17

struct student {

 int classyear;

 int id;

 char* name;

};

ex

Example: traversing a list of struct pointers

// Given a null-terminated list of pointers to students,

// return the name of the student with a given ID, or null

// if there is no student with that ID.

char* getStudentNameWithId(struct student *s[], int id) {

 struct student **curr = s;

 while (*curr) {

 if ((*curr)->id == id)

 return (*curr)->name;

 curr++;

 }

 return NULL;

}

C: Accessing struct fields

18

struct student {

 int classyear;

 int id;

 char* name;

};

ex

Example: traversing a list of struct pointers

int get_i_plus_elem(struct rec* r, int index) {

 return r->i + r->a[index];

}

C: Accessing struct field

19

struct rec {

 int i;

 int a[3];

 int* p;

}; i a p

0 4 16 24

movl 0(%rdi),%eax	 # Mem[r+0]

addl 4(%rdi,%rsi,4),%eax. # Mem[r+4*index+4]

retq

r+4+4*indexr

C: Struct field alignment

20

Unaligned Data (not what C does)

c iv

p p+1 p+9 p+13

struct S1 {

 char c;

 double v;

 int i;

}* p;

Defines new struct type

and declares variable p

of type struct S1* p+0 p+8

c iv7 bytes

p+16 p+20

Multiple of 4Multiple of 8

internal fragmentation

Aligned Data (what C does)

Primitive data type requires K bytes

Address must be multiple of K

C: align every struct field accordingly.

Alignment is especially

important for structs

struct S2 {

 double v;

 int i;

 char c;

} * q;

q+0

iv
q+8 q+12

c
q+13

programmer

Put large data types first:

21

p+0 p+8

c iv7 bytes

p+16 p+20

struct S1 {

 char c;

 double v;

 int i;

} * p;

X

but actually…

C: Struct packing

Base and total size must align largest internal primitive type.

Fields must align their type's largest alignment requirement.

22

p+0 p+8

c iv7 bytes

p+16 p+20

q+0

iv
q+8 q+12

c 3 bytes

q+16

struct S1 {

 char c;

 double v;

 int i;

} * p;

struct S2 {

 double v;

 int i;

 char c;

} * q;

“external fragmentation”
“internal fragmentation”

4 bytes

p+24

“external fragmentation”

C: Struct alignment (full)

Array in struct

23

struct rec {

 int i;

 int a[3];

 int* p;

};

i a p

0 4 16 24Oftset:

struct S2 {

 double v;

 int i;

 char c;

} a[10];

a+16 a+24 a+28

a[0]
a+0

a[1] a[2]
a+16 a+32 a+48

• • •

a+32

iv c 3 bytes

Struct in array

C: typedef

// struct types can be verbose

struct Node { ... };

...

struct Node* n = …;

// typedef can help

typedef struct Node {

	 ...

} Node;

...

Node* n = ...;

24

// give type T another name: U

typedef T U;

Linked Lists

25

head

next

value 2
next

value 4
next NULL

value 6

void append(Node* head, int x) {

 // assume head != NULL

 Node* cursor = head;

 // find tail

 while (cursor->next != NULL) {

 cursor = cursor->next;

 }

 Node* n = (Node*)malloc(sizeof(Node));

 // error checking omitted

 // for x86 simplicity

 cursor->next = n;

 n->next = NULL;

 n->value = x;

}

typedef

struct Node {

 struct Node* next;

 int value;

} Node;

Implement append in x86:

ex

void append(Node* head, int x) {

 // assume head != NULL

 Node* cursor = head;

 // find tail

 while (cursor->next != NULL) {

 cursor = cursor->next;

 }

 Node* n = (Node*)malloc(sizeof(Node));

 // error checking omitted

 // for x86 simplicity

 cursor->next = n;

 n->next = NULL;

 n->value = x;

}

Implement append in x86:

26

head

next

value 2
next

value 4
next NULL

value 6

typedef

struct Node {

 struct Node* next;

 int value;

} Node;

append:

 pushq %rbp

 movl %esi, %ebp

 pushq %rbx

 movq %rdi, %rbx

 subq $8, %rsp

 jmp .L3

.L6:

 movq %rax, %rbx

.L3:

 movq (%rbx), %rax

 testq %rax, %rax

 jne .L6

 movl $16, %edi

 call malloc

 movq %rax, (%rbx)

 movq $0, (%rax)

 movl %ebp, 8(%rax)

 addq $8, %rsp

 popq %rbx

 popq %rbp

 ret

Linked Lists ex

Extra fun: try a recursive version too!

Struct practice problem (similar to CSAPP 3.45)

27

struct s {

 char *a;

 short b;

 int *c;

 char d;

 int e;

 char f;

};

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

2. Modify your picture to show how much space a single element of this

struct would take if used as an element of an array (e.g., the total size).

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

Recall: a short is

2 bytes in C

ex

Struct practice problem (similar to CSAPP 3.45)

28

struct s {

 char *a;

 short b;

 int *c;

 char d;

 int e;

 char f;

};

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

2. Modify your picture to show how much space a single element of this

struct would take if used as an element of an array (e.g., the total size).

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

Recall: a short is

2 bytes in C

ex

a b c d e f
+0 +8 +10 +16 +24,+25 +28 +32,+33

a c e b e f
+0 +8 +16 +20 +24

a b c d e f
+0 +8 +10 +16 +24,+25 +28 +32,+33 +40

