
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/ Dynamic Memory Allocation

Dynamic Memory Allocation in 
the Heap

Explicit allocators

Manual memory management


C: implementing malloc and free

1 2

Outline
• Motivation/alternatives

• Design goals for a memory allocator 


• Utilization/fragmentation

• Implicit free list allocator


• Tracking sizes

• Allocating blocks

• Coalescing blocks


• Explicit free lists 

• List vs. memory order

• Freeing/coalescing 

3

Addr

2N-1 Stack

Heap

Statics

Literals

Text

0

Addr Perm Contents Managed by Initialized

2N-1 Stack RW Procedure context Compiler Run-time

Heap RW Dynamic

data structures

Programmer, 
malloc/free, new/

GC
Run-time

Statics RW Global variables/ 
static data structures

Compiler/ 
Assembler/Linker Startup

Literals R String  literals Compiler/ 
Assembler/Linker Startup

Text X Instructions Compiler/ 
Assembler/Linker Startup

0

Heap Allocation

4

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/


Motivation: why not just allocate in memory order?

5

Heap memory
• • •

0x7fdf28
0x7fdf20
0x7fdf18
0x7fdf10malloc(8)

malloc(16)

malloc(8)

void process_incoming_data(int data[]) {
  // Build complicated data structures
  // ...
  print(“%d”, result);
  // Don’t need data or backing work!
}

Memory 

use

Time

Memory 

use

Time

With a smarter 
memory allocator 

Motivation: what data do we need to track?

6

What data structures could we use to track this?

ex

void* malloc(size_t size);


void free(void* ptr);

pointer to allocated block to free

number of contiguous bytes required
pointer to newly allocated block 
of at least that size

Idea: given a page (4096 bytes), support these two functions

Actual dynamic memory allocator design

7

Design the allocator to store data 
“inline” within the heap memory itself

• Space efficient: no need for much data “on the side”

• Use pointer arithmetic to calculate results

• Good use of caches/locality (we’ll cover more later)

void* malloc(size_t size);


void free(void* ptr);

Allocator basics

8

Allocated block

(4 words)

Free block

(3 words)

Free word

Allocated word

pointer to allocated block to free

number of contiguous bytes required
pointer to newly allocated block 
of at least that size

Pages (OS-provided) too coarse-grained for allocating individual objects.

Instead: flexible-sized, word-aligned blocks.



Example (64-bit words)

9

p1 = malloc(32);

p2 = malloc(40);

p3 = malloc(48);

free(p2);

p4 = malloc(16);

Allocator goals: malloc/free

10

O( . . . )2. Fast allocation.

mallocs/second   or   bytes malloc'd/second

3. High memory utilization.

Most of heap contains necessary program data.

Little wasted space.


Enemy: fragmentation – unused memory that cannot be allocated.

p = malloc(32);

// ...

free(p)

1. Programmer does not decide locations of distinct objects.

Programmer decides: what size, when needed, when no longer needed

Internal fragmentation
Payload smaller than block


11

payload

block

Internal 

fragmentation

Causes

• Metadata (bookkeeping)

• Alignment (8, 16, …)

• Policy decisions

External fragmentation (64-bit words)

Depends on the pattern of future requests.

12

p1 = malloc(32);

p2 = malloc(40);

p3 = malloc(48);

free(p2);

p4 = malloc(48);

Total free space large enough, but no contiguous free block large enough!



Implementation issues
1. Determine how much to free given just a pointer.


2. Keep track of free blocks.


3. Pick a block to allocate.


4. Choose what do with extra space when allocating a 
structure that is smaller than the free block used.


5. Make a freed block available for future reuse.

13

Knowing how much to free
Keep length of block in header word preceding block

14

p0 = malloc(32);

free(p0);

p0

block size metadata data payload

48

Takes extra space!

Keeping track of free blocks
Method 1: Implicit free list of all blocks using length


Method 2: Explicit free list of free blocks using pointers


Method 3: Seglist

Different free lists for different size blocks


More methods that we will skip…

15

40 32 1648

40 32 1648

Implicit free list: block format

16

16-byte aligned sizes have

4 zeroes in low-order bits 
    00000000 
    00010000

    00100000

    00110000

    …

Steal LSB for status flag.

LSB = 1: allocated

LSB = 0: free

Block metadata:

1. Block size

2. Allocation status


Store in one header word.

block size

1 word

payload

(application data,

when allocated)

a

optional padding

payload

(application data,

when allocated)



Implicit free list: heap layout

17

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word wasted

Start of 

heap

Block Header 

(metadata)

Block size Block  allocated?

Special end-heap word

Looks like header of

zero-size allocate block.

Initial heap 
word cannot 
be part of 
block.

Alignment may

cause internal 

fragmentation

Payloads start at 16-byte (2-word) alignment.

Pointers returned by malloc are to payloads, not headers

Block sizes are multiples of 16 bytes.

18

Implicit free list: finding a free block
First fit:


Search list from beginning, choose first free block that fits


Next fit:

Do first-fit starting where previous search finished


Best fit:

Search the list, choose the best free block: fits, with fewest bytes left over

19

Implicit free list: allocating a free block

20

16 1648

p = malloc(24);

Now showing allocation status flag implicitly with shading.

Allocated space ≤ free space.

Use it all? Split it up?

1616 1632

p

Block Splitting



Implicit free list: freeing an allocated block

21

16 1632 16

p

free(p);

malloc(40);
External fragmentation!

Enough space, not one block.

16 1632 16

Clear allocated flag.

Coalescing free blocks

22

32 1632 16

free(p)

p

Coalesce with preceding free block?

32 1648 16

Coalesce with following free block.

logically gone

Bidirectional coalescing: boundary tags 

23

Boundary tag

(footer)

32 32 32 32 48 3248 32

Header block size

payload

(application data,

when allocated)

a

optional padding

block size a

[Knuth73]

Conceptually: more like a doubly-linked list

Constant-time O(1) coalescing: 4 cases

24

m1 1

m1 1
n 0

n 0
m2 1

m2 1

m1 1

m1 1
n 1

Freed Block
n 1

m2 1

m2 1

before: alloced

after: alloced


m1 0

m1 0
n 1

Freed Block
n 1

m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

before: free

after: alloced


m1 1

m1 1
n 1

Freed Block
n 1

m2 0

m2 0

before: alloced

after: free


n+m1+m2 0

n+m1+m2 0

m1 0

m1 0
n 1

Freed Block
n 1

m2 0

m2 0

before: free

after: free


m1 1

m1 1
n+m2 0

n+m2 0



Improved block format 
for implicit free lists 

25

Free block:Allocated block:

block size

payload

1p block size a

block size

0p

Update headers of 2 blocks on each malloc/free.


Minimum block size for implicit free list?


block size

payload

1p

block size a

block size

01

block size 0

payload

1

block size

payload

11

this block 

allocated?

prev block 

allocated?

26

Summary: implicit free lists
Implementation:	 simple


O(…) for allocate and free?

Allocate:	 O(blocks in heap)

Free:	 	 O(1)


Memory utilization:	 depends on placement policy


Not widely used in practice

some special purpose applications


27

Splitting, boundary tags, coalescing are general to all allocators.

Explicit free list: block format

Explicit list of free blocks rather than implicit list of all blocks.

28

Free block:
block size a

next pointer

prev pointer

block size a

Allocated block:

(same as implicit free list)

block size

payload

(application data,

when allocated)

a

optional padding

block size aPossible to omit footer



Explicit free list: list vs. memory order
Abstractly:	 doubly-linked lists


Concretely:	 free list blocks in any memory order

29

A B C

32 32 32 32 4848 3232 32 32

Next

Previous

A B

C

Previous

Next

List Order ≠ Memory Order

Explicit free list: allocating a free block

30

Before

After

= malloc(…)

(with splitting)

Explicit free list: freeing a block
Insertion policy: Where in the free list do you add a freed block?


LIFO (last-in-first-out) policy

Pro: simple and constant time

Con: studies suggest fragmentation is worse than address ordered


Address-ordered policy

Con: linear-time search to insert freed blocks

 Pro: studies suggest fragmentation is lower than LIFO


LIFO Example: 4 cases of freed block neighbor status.

31

Freeing with LIFO policy: 
between allocated blocks

Insert the freed block at head of free list.

32

free( )

Head

Head

Before

After

ex

blue: next

red: prev


open: NULL




Freeing with LIFO policy: 
between free and allocated

Splice out predecessor block, coalesce both memory blocks, and insert the 
new block at the head of the free list.

33

free( )

Head

Before

Head

After

Could be on either or both sides...

ex

blue: next

red: prev


open: NULL


Freeing with LIFO policy: 
between allocated and free

Splice out successor block, coalesce both memory blocks and insert 
the new block at the head of the free list.

34

free( )

Head

Before

ex

blue: next

red: prev


open: NULL


Head

After

Freeing with LIFO policy: 
between free blocks

Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the 
new block at the head of the list.

35

free( )

Head

Before

Head

After

blue: next

red: prev


open: NULL


ex Summary: Explicit Free Lists
Implementation:	 fairly simple


Allocate:	 O(free blocks)	 	 vs. O(all blocks)

Free:	 	 O(1)	 	 	 vs. O(1)


Memory utilization:

depends on placement policy

larger minimum block size (next/prev) vs. implicit list


Used widely in practice, often with more optimizations.


Splitting, boundary tags, coalescing  are general to all allocators.
36



Improved block format 
for explicit free lists 

37

Free block:Allocated block:

block size

payload

1p block size a

next pointer

prev pointer

block size

0p

block size

payload

1p

block size a

next pointer

prev pointer

block size

01

block size 0

payload

1

block size

payload

11

Update headers of 2 blocks on each malloc/free.


Minimum block size for explicit free list?


38

Seglist allocators
Each size bracket has its own free list


Faster best-fit allocation...

39

32

48-64

80-inf

16

Summary: allocator policies

Placement policy:

First-fit, next-fit, best-fit, etc.

Seglists approximate best-fit in low time


Splitting policy:

Always? Sometimes? Size bound?


Coalescing policy:

Immediate vs. deferred

40

All policies offer trade-offs in fragmentation and throughput.



