CS 240 WELLESLEY
. [] (@) Force Quit Applications
Foundations of Computer Systems e
Your system has run out of application memory.
To avoid pi with your quit any applications you
e are not using.
Dynamic Memory Allocation in @ soar 25738
& Finder 2779 MB
the Heap
Explicit allocators
Manual memory management
C: implementing malloc and free
https://cs.wellesley.edu/~cs240/ Dynamic Memory Allocation 1
Outline Heap Allocation
Addr
. . . w4 I
¢ MOtlvatlon/alternatlves 281 Stack Addr Perm Contents Managed by Initialized
o .
De5|gn goals fora memory allocator 2N Stackl RW Procedure context Compiler Run-time
e Utilization/fragmentation 7
¢ Implicit free list allocator - Heap A
| Dynamic Programmer,
. Trackmg sizes : » Heap RW e malloc/free, new/ Run-time
. Statics GC
e Allocating blocks - -
. Statics Global variables/ Compiler/ Startup
L4 Coalescmg blocks Literals static data structures Assembler/Linker
* Explicit free lists : ing li Compiler/
p ; Text Literals R String literals Assembler/Linker Startup
e List vs. memory order g
. . 0 Text X Instructions Aol Startup
* Freeing/coalescing

Assembler/Linker

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Motivation: why not just allocate in memory order?

Heap memory

o ..
malloc(8) | 0x7fdf28
0x7£d£20
malloc(16)
0x7£df18
malloc(8) { 0x7£df10 LK Force Quit Applications
Your system has run out of application memory.
To avod problems with your computer, quit any appications you
are not sing.
@ Safari 237.3MB
void process_incoming data(int data[]) { & Finder 277.9 MB

// Build complicated data structures
/7 ...

print(“%d”, result);

// Don’t need data or backing work!

Memory With a smarter
use memory allocator

Time

Time

Motivation: what data do we need to track?

Idea: given a page (4096 bytes), support these two functions

pointer to newly allocated block
of at least that size number of contiguous bytes required

¥

void* malloc(size € size);
pointer to allocated block to free

void free(void* ptr);

What data structures could we use to track this?

Actual dynamic memory allocator design

Design the allocator to store data
“inline” within the heap memory itself

* Space efficient: no need for much data “on the side”
¢ Use pointer arithmetic to calculate results
* Good use of caches/locality (we’ll cover more later)

Allocator basics

Pages (OS-provided) too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

15 T N I I I e |

Y M D Allocated word
Allocated block Free block
(4 words) (3 words)

pointer to newly allocated block
of at least that size number of contiguous bytes required

void* malloc(size € size);
pointer to allocated block to free

void free(void* ptr);

Exa mple (64-bit words)

pt=malloe32); [[[[T TTTTTTTTTTT]

p2=malloc0); [[[T TTTTTTTTTTTTT]

p3=mallocs); [[[[T TTTTTTTTTTT]

free(p2) ; (TTTTT T T T 1]

pa=malloca6); [[[[[T T [TTTTTTTT]

Allocator goals: malloc/free

1. Programmer does not decide locations of distinct objects. © = malloc(32);

Programmer decides: what size, when needed, when no longer needed free (p)

2. Fast allocation. “ o(...)

mallocs/second or bytes malloc'd/second

3. High memory utilization.
Most of heap contains necessary program data.
Little wasted space. CITTTTTITTTTITTTTT 1]

Enemy: fragmentation — unused memory that cannot be allocated.

Internal fragmentation

Payload smaller than block

block

N

\ Internal /

fragmentation

Causes
¢ Metadata (bookkeeping)
e Alignment (8, 16, ...)
e Policy decisions

External fragmentation (ss-bit words)

Total free space large enough, but no contiguous free block large enough!

pt=matloe32); [[[[T [TTTTTTITT]

p2=mallocd0); [[[[[TTTTTTITTTTTT]

p3=malloc8); [[[[T TTTTTTTTTTTT]

free(p2) ; (I T T 1]

p4 = malloc (48);

Depends on the pattern of future requests.

Implementation issues

1. Determine how much to free given just a pointer.
2. Keep track of free blocks.
3. Pick a block to allocate.

4. Choose what do with extra space when allocating a
structure that is smaller than the free block used.

5. Make a freed block available for future reuse.

Knowing how much to free

Keep length of block in header word preceding block

Takes extra space!

p0 = malloc(32); 48

block size metadata data payload

greepo); [[[T T [TTTTTTTTT]TT]

Keeping track of free blocks
Method 1: Implicit free list of all blocks using length

- ~< - < _ - -

- e S - =
[ol [T T B4l [[[[[ae[T]

Method 2: Explicit free list of free blocks using pointers

/_\
[l A7 [E 4] [[[[[T

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip...

Implicit free list: block format

1 word
Block metadata: — Steal LSB for status flag.
1. Block size block size l a |« LS8 =1:allocated
; LSB = 0: free
2. Allocation status I |
Store in one header word. payload

(application data, ‘
when allocated)

optional padding ‘

16-byte aligned sizes have
4 zeroes in low-order bits
00000000
00010000
00100000
00110000

Implicit free list: heap layout

Block Header

(metadata) Alignment may Special end-heap word

Start of cause internal Looks like header of

Block size | Block allocated? .
heap / fragmentation zero-size aIIocate<ockA

[‘16|0 ‘32|1‘ ‘ ‘64\0 ‘3z|1 ‘o|1
Initial heap

word cannot

be part of |:| Free word

block.

|:| Allocated word

Payloads start at 16-byte (2-word) alignment.
|:| Allocated word wasted

Pointers returned by malloc are to payloads, not headers
Block sizes are multiples of 16 bytes.

Recall: in this implicit free list heap, why does the block pointed to by the red arrow have
size 327

payload is 2 words, 2*16=32 (A)
F rd
B:;:';:::‘:T e payload is 2 words, header 2, 4*8=32 (B)
Allocated word
Block size | Block allocated?
Allocated word wasted
‘ \lslv 3211 ‘ 54|0‘ payload is 3 words, header 1, 4*8=32 ()

/

payload 2 words, header 1, 1 wasted (alig... (D)

None of the above (E)

.- Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

20

s

Implicit free list: finding a free block
First fit:

Search list from beginning, choose first free block that fits

Next fit:

Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

Implicit free list: allocating a free block

RN -7 T T =<

“~ S
ES[ET4e] [[T [[as[

Allocated space < free space.
Use it all? Split it up?

9. ¥

o —-\\\/"\
(2] \32\?\ [INECIECTN

p = malloc(24);

P

Block Splitting

Now showing allocation status flag implicitly with shading.

Implicit free list: freeing an allocated block

PN

o RSN
BelTz2l [[[29 fae[]
P

free(p) ; Clear allocated flag.

- -———

., -

Ne” RVAGRAN
[e[Tz2[[[[2] [as[7]

malloc (40) ; x External fragmentation!
! Enough space, not one block.

Coalescing free blocks

BRIl 11 [l Re[]
P
free (p) Coalesce with following free block.
Bl T T 0ss[T T []<Jos[]
logically gone

Coalesce with preceding free block?

Bidirectional coalescing: boundary tags

Header —, | block size I a

Conceptually: more like a doubly-linked list
payload

(application data,
when allocated)

optional padding

Boundary tag

(footer) block size | a

[Knuth73]

Constant-time O(1) coalescing: 4 cases

ml 11 ml 11 ml |1 mil |1
ml |1 mi [1 mi [1 ml |1
before: alloced n IE n [0 n 1 ntm2 [0 before: alloced
after: alloced Freed Block | —> Freed Block —_— after: free
n [1 n [0 n [1
m2 |1 m2 |1 m2 [0
m2 [1 m2 _ [1 m2 [0 n+m2 [0
mi [0 niml [0 m1 [0 n+mi+m2 | 0
ml [0 ml ‘ 0
before: free W B n [1
after: alloced Freed Block | —> Freed Block | —> before: free
n ‘ 1 n+m1 ‘ 0 n ‘ 1 after: free
m2 |1 m2 |1 mz__ |0
m2_ [1 m2_ [1 m2_ |0 ntmim2 | 0

[
|
Imp.rove.d. block f_ormat What is the minimum block size for an implicit free block (in bytes)?
for implicit free lists
block size |p|1]
ayload

Allocated block: Free block: pay .

: block size (1|0}

prev block this block
allocated? allocated?
block size Allocated block: Free block:
block size [p[l block size lp[O bock ths bock 16
. rev blocl
[fE cfize ‘0|1 :IIocated? allocated?
ayload

payload pay block size |pll block size |;|0 o

block size block size wl

payload payload
block size
32
Update headers of 2 blocks on each malloc/free.
Minimum block size for implicit free list? None of the above
2 .. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Summary: implicit free lists Explicit free list: block format

Implementation: simple
0(...) for allocate and free? Explicit list of free blocks rather than implicit list of all blocks.
Allocate: O(blocks in heap)
Free: O(1
() Allocated block: Free block:
Memory utilization: depends on placement policy [leekcifz I 2 Blockisize [i
next pointer
payload =
Not widely used in practice e) prev pointer
some special purpose applications

when allocated)

optional padding
e . Possible to omit footer blocksize |a block size a
Splitting, boundary tags, coalescing are general to all allocators.

(same as implicit free list)

Explicit free list: list vs. memory order

Abstractly: doubly-linked lists yeyt
A =B = ¢ [

Previous

Concretely: free list blocks in any memory order

Next
\ B

A
(2 1, [l e 7T -1 H‘Wﬂ;]

Previous

List Order # Memory Order

Explicit free list: allocating a free block

Before

@ [T TTTTTTT]

After ﬂg (with splitting)

CITTTT el T 111

= malloc(..)

Explicit free list: freeing a block

Insertion policy: Where in the free list do you add a freed block?

LIFO (last-in-first-out) policy
Pro: simple and constant time
Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy

Con: linear-time search to insert freed blocks

Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

Freeing with LIFO policy:
between allocated blocks

Insert the freed block at head of free list.

blue: next Before
red: prev free (@)
open: NULL L\
Heac LTI T T T glo
v
After

Head [[III@“III| M—

Freeing with LIFO policy:
between free and allocated

Splice out predecessor block, coalesce both memory blocks, and insert the
new block at the head of the free list.

blue: next Before free
red: prev
open:NULL Head 'Hb I'IE\

After

Could be on either or both sides...

Freeing with LIFO policy:
between allocated and free

Splice out successor block, coalesce both memory blocks and insert
the new block at the head of the free list.

el ’f FE\
P Head EEEEEEEEDLEE ﬁﬁo

After

Head

Freeing with LIFO policy:
between free blocks

Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the
new block at the head of the list.

blue: next Before
red: prev free (@)
open: NULL
Head oo | [T 1T Je/®] [] I
After

Head @) Tm
11
[e]6]

Summary: Explicit Free Lists
Implementation: fairly simple

Allocate: (o] blocks) vs. O(all blocks)
Free: 0(1) vs. 0(1)

Memory utilization:
depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

[
||
Improve.d. block format What is the minimum block size for an explicit free block (in bytes)?
for explicit free lists
block size ‘p 1
llocated block oy e
Allocated block: : 8
Free block block size ‘1 0
block size Ml block size [plo next pointer
next pointer prev pointer Allocated block: Free block: 16
payload [[FETiEEr block size |p|1 block size ‘p|0
block size next pointer
block size ke ‘o‘ g oad prev pointer 24
payload payloa
block size ‘1'1 block size
Update headers of 2 blocks on each malloc/free. payload 32
Minimum block size for explicit free list?
None of the above
.- Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Seglist allocators

Each size bracket has its own free list

o[-

[[[THITTTHIITHF

agea| [[[T TTTHITITITITTF
soinf[[[[T T TTTITTTITF

Faster best-fit allocation...

Summary: allocator policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:
First-fit, next-fit, best-fit, etc.
Seglists approximate best-fit in low time

Splitting policy:

Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

