WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Dynamic Memory Allocation in
the Heap

Explicit allocators
Manual memory management

C: implementing malloc and free

https://cs.wellesley.edu/~cs240/ Dynamic Memory Allocation

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

@ Force Quit Applications

Your system has run out of application memory.

To avoid problems with your computer, quit any applications you
are not using.

@ Safari 237.3 MB
& Finder 277.9 MB

*» Firefox 79.20 GB

Outline
Addr

e Motivation/alternatives 2N-1 | Stack

e Design goals for a memory allocator

e Utilization/fragmentation
e Implicit free list allocator E> Heap

e Tracking sizes

e Allocating blocks JLaties
e Coalescing blocks Literals
e Explicit free lists Text

e List vs. memory order

e Freeing/coalescing 0

Heap Allocation

Addr
2N-14

=

Stack
:

T

Heap

Statics

Literals

Text

Perm

RW

RW

RW

R

Contents

Procedure context

Dynamic
data structures

Global variables/

static data structures Assembler/Linker

String literals

Instructions

Managed by Initialized

Compiler Run-time
Programmer,
malloc/free, new/ Run-time
GC
1
Compiler/ Startup
Compiler/
Start
Assembler/Linker artip
C 1
ompiler/ Startup

Assembler/Linker

Motivation: why not just allocate in memory order?

Heap memory

® o o
malloc(8) 1 0x7fdf28
O0x7£df20
malloc(16)
Ox7fdf1l8
mal lOC (8) { OX7 fdf 1 O @ Force Quit Applications
Your system has run out of application memory.
To avoid problems with your computer, quit any applications you
re not using.
@ Safari 237.3 MB
vold process incoming data(int data[]) { & Finder 277.9 MB

#9 Firefox 79.20 GB

// Build complicated data structures
/] ...

print (“%d”, result);

// Don’t need data or backing work!

Memory With a smarter
use memory allocator

}

 Force Quit _ Time

Time

Motivation: what data do we need to track?

ldea: given a page (4096 bytes), support these two functions

pointer to newly allocated block
of at least that size number of contiguous bytes required

V v

volid* malloc(size t size);
/ pointer to allocated block to free

vold free(volid* ptr);

What data structures could we use to track this?

Actual dynamic memory allocator design

Design the allocator to store data
“inline” within the heap memory itself

e Space efficient: no need for much data “on the side”
e Use pointer arithmetic to calculate results
e Good use of caches/locality (we’ll cover more later)

Allocator basics

Pages (OS-provided) too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

Free word

\ { Y Allocated word

Allocated block Free block
(4 words) (3 words)

pointer to newly allocated block
of at least that size number of contiguous bytes required

v v

volid* malloc(size t size);
/ pointer to allocated block to free

vold free(vold* ptr);

Exam ple (64-bit words)

pl = malloc(32);
p2 = malloc (40) ;
p3 = malloc(48);
free (p2) ;

p4 = malloc(16);

Allocator goals: malloc/free

1. Programmer does not decide locations of distinct objects. P = matloc(32)7

Programmer decides: what size, when needed, when no longer needed free (p)

2. Fast allocation. “ oC...)

mallocs/second or bytes malloc'd/second

3. High memory utilization.

Most of heap contains necessary program data.

Little wasted space.

Enemy: fragmentation — unused memory that cannot be allocated.

Internal fragmentation

Payload smaller than block

block
A

—

payload

\ Internal /

fragmentation

cCauses

e Metadata (bookkeeping)
e Alignment (8, 16, ...)
e Policy decisions

External fragmentation (ss-bit words)

Total free space large enough, but no contiguous free block large enough!

pl = malloc(32);

p2 = malloc (40) ;

p3 = malloc(48);

free (p2) ;

p4 = malloc(48) ;

Depends on the pattern of future requests.

Implementation issues

1. Determine how much to free given just a pointer.
2. Keep track of free blocks.
3. Pick a block to allocate.

4. Choose what do with extra space when allocating a
structure that is smaller than the free block used.

5. Make a freed block available for future reuse.

13

Knowing how much to free

Keep length of block in header word preceding block
\\

Takes extra space!

pO

p0 = malloc(32); }8 ‘N \

block size metadata data payload

free (p0) ;

Keeping track of free blocks

Method 1: Implicit free list of all blocks using length

Method 2: Explicit free list of free blocks using pointers

40 ')/32\28 16

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip...

Implicit free list: block format

1 word
Block metadata: — —"— — Steal LSB for status flag.
1. Block size P block size | a tz g : (1) ?r”eOecatecj
2. Allocation status oad '
Store in one header word. pdylioa

(application data,
when allocated)

optional padding

16-byte alignéd sizes have
4 zeroes in low-order bits
00000000
00010000
00100000
00110000

Implicit free list: heap layout

Start of
heap

Block Header
(metadata) Alignment may
Block size | Block allocated? cause internal

fragmentation

\ /

Special end-heap word
Looks like header of
zero-size allocate block.

\

160 32|1 640 32|1 0|1
Initial heap
word cannot
be part of Free word
block.

Payloads start at 16-byte (2-word) alignment.
Pointers returned by malloc are to payloads, not headers
Block sizes are multiples of 16 bytes.

Allocated word

Allocated word wasted

Recall: in this implicit free list heap, why does the block pointed to by the red arrow have

. &0
size 327 h

payload is 2 words, 2*16=32 (A)
Block Head | F d .
(;ceta::t;r | A payload is 2 words, header 2, 4*8=32 (B)
Allocated word
Block size | Block allocated?
Allocated word wasted

‘ ‘ls'ol ‘32@ | l ‘64|0| ‘ ‘ ‘ payload is 3 words, header 1, 4*8=32 (C)

r

payload 2 words, header 1, 1 wasted (alig... (D)

None of the above (E)

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Implicit free list: finding a free block

First fit:
Search list from beginning, choose first free block that fits

Next fit:
Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

Implicit free list: allocating a free block

Allocated space < free space.
Use it all? Split it up?

p = malloc(24);

Block Splitting

Now showing allocation status flag implicitly with shading.

20

Implicit free list: freeing an allocated block

free(p) ;

External fragmentation!
Enough space, not one block.

malloc (40) ; x

21

Coalescing free blocks

s e h Vs N
32 32 16 16
f
P
free (p) Coalesce with following free block.

logically gone

Coalesce with preceding free block?

Bidirectional coalescing: boundary tags Knuth73

Header » | blocksize | a
Conceptually: more like a doubly-linked list

payload
(application data,
when allocated)
optional padding

Boundary tag ook o
(footer) — OCK Size d
(,/ \\w,/ \\,‘(/” \\\;
32 32 |32 32 (48 48 | 32 32
13 ¥ PR 7

Constant-time O(1) coalescing: 4 cases

before: alloced
after: alloced

before: free
after: alloced

ml

ml

n

Freed Block

n
m?2

n 1

Freed Block

n
m2

m2

ml 1

ml 1

n 1
Freed Block

n 1

ml 0

ml 0

n 1
Freed Block

n 1

n+ml+m?2

before: alloced
after: free

before: free
after: free

Improved block format
for implicit free lists

Allocated block: Free block:

prev block this block
allocated? allocated?

block size |p|1 block size ‘p‘o

payload

block size

payload

Update headers of 2 blocks on each malloc/free.

Minimum block size for implicit free list?

_
[]
What is the minimum block size for an implicit free block (in bytes)?
8
Allocated block: Free block: y
prev block this block
allocated? allocated?
block size p| 1 block size IEIE ”
payload
block size
32
None of the above
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Summary: implicit free lists

Implementation: simple

O(...) for allocate and free?
Allocate: O(blocks in heap)
Free:

Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

Splitting, boundary tags, coalescing are general to all allocators.

Explicit free list: block format

Explicit list of free blocks rather than implicit list of all blocks.

Allocated block: Free block:

block size a block size a

next pointer

payload

(application data,
when allocated)

prev pointer

optional padding

Possible to omit footer block size a block size a

(same as implicit free list)

Explicit free list: list vs. memory order

Abstractly: doubly-linked lists pext

LA B c [

Previous

Concretely: free list blocks in any memory order

32

Previous

List Order # Memory Order

Explicit free list: allocating a free block

Before

4

0 le—0 <
=l

After (with splitting)

= malloc(..)

Explicit free list: freeing a block

Insertion policy: Where in the free list do you add a freed block?

LIFO (last-in-first-out) policy
Pro: simple and constant time

Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
Con: linear-time search to insert freed blocks

Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

Freeing with LIFO policy:
between allocated blocks

Insert the freed block at head of free list.

blue: next Before
red: prev free (@)
open: NULL /
Head
After

Head ./ O

32

Freeing with LIFO policy:

between free and allocated

Splice out predecessor block, coalesce both memory blocks, and insert the
new block at the head of the free list.

blue: next
red: prev

open: NULL

Before

Head

£ r7)

h

—o

\4

Could be on either or both sides...

33

Freeing with LIFO policy:
between allocated and free

Splice out successor block, coalesce both memory blocks and insert
the new block at the head of the free list.

blue: next Before
red: prev
open: NULL Head X T S
t\ v
O
After

Head ./

Freeing with LIFO policy:
between free blocks

Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the
new block at the head of the list.

blue: next Before
red: prev

open: NULL

Head

After

o o
Head ._> h@ | —~h

Summary: Explicit Free Lists

Implementation: fairly simple
Allocate: O(blocks) vs. O(all blocks)
Free: O(1) vs. O(1)

Memory utilization:

depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

Improved block format
for explicit free lists

Allocated block: Free block:

block size (p|1 block size (p|0 next pointer
next pointer prev pointer
prev pointer
payload
block size block size
payload
block size
Update headers of 2 blocks on each malloc/free. bayload

Minimum block size for explicit free list?

What is the minimum block size for an explicit free block (in bytes)?

8
Allocated block: Free block: ”
block size |p|1 block size |p|0
next pointer
prev pointer 24
payload
block size
32

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Seglist allocators

Each size bracket has its own free list

o I I o I o O o O

2| [l =l I T
gea| | | | | [[l =111l
soinf | | | | LI LT P TTT T =

Faster best-fit allocation...

Summary: allocator policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:
First-fit, next-fit, best-fit, etc.
Seglists approximate best-fit in low time

Splitting policy:

Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

