CS 240
Foundations of Computer Systems

CS 240 Stage 2!
Hardware-Software Interface

Memory addressing, C language, pointers
Assertions, debugging
Machine code, assembly language, program translation
Control flow
Procedures, stacks
Data layout, security, linking and loading

https://cs.wellesley.edu/~cs240/

‘WELLESLEY

WELLESLEY
CS 240

Foundations of Computer Systems

Programming with Memory

the memory model
pointers and arrays in C

https://cs.wellesley.edu/~cs240/ 2

Program, Application

E Programming Language

S mm)

E Compiler/Interpreter

[+

(9’) Operating System
- [Instruction Set Architecture]

v Microarchitecture

©

3 Digital Logic

©

|

© Devices (transistors, etc.)

X

Solid-State Physics

Instruction Set Architecture (HW/SW)

memory

Large storage
Addresses, Locations

Computer

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Byte-addressable memory = mutable byte array

. / 0XFF..F
Location / cell = element
« |dentified by unique numerical address
« Holds one byte (8 bits 3 .
vte () @ & Address = index
o
fuy = « Unsigned number
2 m
£ a * Represented by one word
g 35 « Computable and storable as a value
S
load 2 0
oa § o
Operations: 0x00..0

« Load: read contents at given address
« Store: write contents at given address

Multi-byte values in memory

Store across contiguous byte locations.
Example: 8 byte (64 bit) values

Alignment

Multi-byte values start at addresses that are
multiples of their size

Bit order within byte always same.
Recall: byte ordering within larger value?

64-bit
Words

Bytes

Address

Ox1F
OX1E
0x1D
0x1C
0x1B
0x1A

" s

Isan "int" stored at address 0x00000002 aligned?

Yes

No

Maybe

. For screen , share the enti

.. Start th ion to see li

reen. Get help at pollev.com/app m

Isan "int" stored at address 0x00000002 aligned?

Maybe

Start the presentation to see live content. For screen sh

. Get help at poll

0%

0%

0%

For these slides, we’ll draw the bytes in this reverse
order so that multi-byte values can be read directly

M

S
X

memory drawn as 32-bit values,

little endian order

Is it a pointer?
How do we know if values are pointers or not?
How do we manage use of memory?

AT A

memory drawn as 32-bit values,
little endian order

]
" u
NS . , . . .
Isan “int" stored at address 0x00000002 aligned? Endlanness' deta 1 Is In what order are the individual bytes of a multi-byte value
stored in memory?
Yes most significant byte least significant byte
~ //\‘7 ~ o N R
0% - N y N
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0
No 2 B6 00 0B
00/0 . e .
Address | Contents least significant byte first
Maybe 03 2A « low order byte at low address
0% Little Exnd 02 B6 « high order byte at high address
01 00 « used by x86, ... and €5240!
00 0B
Big End
Address | Contents most significant byte first
03 0B « high order byte at low address
02 00 « low order byte at high address
01 B6 « used by networks, SPARG, ...
00 2a
.. Start the presentation to see live content. For screen sh: ft hare the reen. Get help at poll .. 10
Data, addresses, and pointers Data, addresses, and pointers
address = index of a location in memory
pointer = a reference to a location in memory,
0x24 0x24
* represented as an address stored as data *
0x20 00 ! 00 ! 00 !FO | Ox20
o0x1cC 0x1C
0x18 Let’s store the number 240 at address 0x20. 0x18
0x14 24050 = FO;5= 0x00 00 00 FO 0x14
0x10 00 ! 00 {00 jo0C [0x10
0x0C At address 0x08 we store a pointer to the contents at address 0x20. 0x0C
0x08 At address 0x00, we store a pointer to a pointer. 00! 00 |00 20 |0x08
ox0t Th ber 12 is stored at address 010 ox0t
0x00 e number IS storead at aadress Ux . 00 00! 00! 08]0x00

C: Variables are locations

The compiler creates a map from variable name = location.
Declarations do not initialize!

int x; x @ 0x20
int y;

0x24
00 | 00 100 ;00 fox20 X
x = 0; @ 0x20 0x1C
0x18
0x14

0x3CD02700; 0x10
3C /DO |27 |00

0x08
0x04
0x00

@ 0x20

*3
*2
*7
*o

C: Variables are locations

The compiler creates a map from variable name 2>

Declarations do not initialize!

int x; x @ 0x20

int vy;

0x3CD02700;

@ 0x20

@ 0x20

location.

0x24

3C | DO ;27 ;03

0x20

X

0x1C

0x18

0x14

0x10

3C | DO ;27 ;00

0x08

0x04

0x00

*3
*2
*7
*0

C: Pointer operations and types

address = index of a location in memory
pointer = a reference to a location in memory, an address stored as data

Expressions using addresses and pointers:

& address of the memory location representing
a.k.a. "reference to !

* contents at the memory address given by
a.k.a. "dereference !

Pointer types:

* address of a memory location holding a
a.k.a. "a reference to a "

C: Types determine sizes

Sizes of data types (in bytes)
Java Data Type C Data Type

boolean
byte
char
short
int

float

double

long

(reference)

bool
char

short int

int

float

long int
double

long long
long double
(pointer) *

Used by CS Linux, most modern machines

|

32-bit word [64-bit word
1 1
1 1
2 2
2 2
4 4
4 4
4 8
8 8
8 8
8 16
4 8

address size = word size

& = address of
* = contents at

C: Pointer example

Declare a variable, p]

int* p;

‘[that will hold the address of a memory location holding an int]

Declare two variables, x and y, that hold ints,
and store 5 and 2 in them, respectively.

int x = 5;
int y = 2;

Take the address of the memory -
p = &x; representing x

... and store it in the memory location representing p.
Now, “p points to x.”

Add 1to [the contents of memory at the address]

- =
y = 1 + ¥p; given by the cpntents of thg
memory location representing p

)

... and store it in the memory location representing y. |

C: Pointer example

C assignment:
g

Left-hand-side = right-hand-side;

int* p;

int x = 5; @ ox14,

int = 2; ,
= &X; 0x14

@ 0x14

@ 0x14

(=0x14)
(=0x5)

(=0x14)
@ 0x14

& = address of
* = contents at

What is the type of *p?
What is the type of &x?

Whatis *(&y) ?

00 1 00 (00 ;08

0x20

0x1cC

0x18

00 00 00 @D | ox14 X

0x10

0x0C

0x08

00 ; 00 {00 ;14

0x00

What is the result of printing the decimalvaluesof “a" and “b" at the end of this code?

2,10
int a = 1;
int b = 5; 3,5
int* p = &a;
*p = *p + 1;
a=a + 1; 3,10
p = &b;
6,5
*p = *p * 2
None of the above
Start the ion to see li . For screen shi ftware, share the reen. Get help at pollev.com/app

0%

0%

0%

0%

0%

[
|
What is the result of printing the decimalvaluesof “a" and “b" at the end of this code?
2,10

int a = 1; 2s
int b = 5;
int* p = &a; il
*P = *p + 1;
a=a+1; &2
p = &b None of the above
*p = kp * 2;

.. Start the presentation to see live content. For screen sh:

. Get help at poll /

What is the result of printing the decimalvaluesof “a" and “b" at the end of this code?

2,10
. 3,5
int a = 1;
int b = 5;
int* p = &a; 3,10
*p = *p + 1;
a=a+1; 5.2
p = &b: None of the above
*p = *p * 2;
.. Start the presentation to see live content. For screen sh: ft hare the reen. Get help at poll

0%

0%

0%

0%

0%

C: Pointer type syntax

Spaces between base type, *, and variable name mostly do not matter.

The following are equivalent:

int* ptr;
| see: "The variable ptr holds an address of an int in memory."

int * ptr;

int *ptr; more common C style

Looks like: "Dereferencing the variable ptr will yield an int."

Or "The memory location where the variable ptr points holds an int."

Caveat: do not declare multiple variables unless using the last form.
int* a, b; meansint *a, b; meansint* a; int b;

Arrays are adjacent memory locations
c: Arrays storing the same type of data.
. a is a name for the array’s base address,
Declaration:

int a[6]; can be used as an immutable pointer.

element type
number of

elements

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

*3
*2
*7
*o

23

Arrays are adjacent memory locations
storing the same type of data.

C: Arrays

. a is a name for the array’s base address,
Declaration:

can be used as an immutable pointer.
Address of a[1] is base address a
plus i times element size in bytes.

int a[6];

Indexing: a[0] = 0xfo0;

0x24
0x20 al5]
ox1cC
0x18
0x14
0x10
00 (00 00 FO|oxoc 2l0]
0x08
0x04
0%00

*3
2
*7
*0

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer. Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[i] is base address a Indexing: a[0] = 0xf0; Address of a[1] is base address a
a[s] = a[ol; plus i times element size in bytes. a[s] = a[oJ; plus i times element size in bytes.
No bounds a[6] = OXBAD;
check:
0x24 00 |00 [OB |AD [0x24
00 {00 ;00 [FO |0x20 @al5] 00 00 ;00 |FO|o0x20 al5]
ox1cC 0x1C
0x18 0x18
0x14 0x14
0x10 0x10
00 100 ;00 |FO |oxoc 2[0] 00 100 |00 FO |oxoc 2@L0]
0x08 0x08
0x04 0x04
0x00 0x00
VAT M
Arrays are adjacent memory locations Arrays are adjacent memory locations
c: Arrays storing the same type of data. C: Arrays storing the same type of data.
Declarati a is a name for the array’s base address, Declarati a is a name for the array’s base address,
eclaration: int a[6]; can be used as an immutable pointer. eclaration: int af6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[i] is base address a Indexing: a[0] = 0xf0; Address of a[1] is base address a
a[5] = a[oj; plus i times element size in bytes. a[5] = a[0]; plus i times element size in bytes.
No bounds a[6] = OxBAD; No bounds a[6] = 0xBAD;
check: a[-1] = O0xBAD; check: a[-1] = 0xBAD;
00 ;00 ;OB !AD | 0x24 Pointers: int* p; 00 ;00 ;OB !AD |0x24
00 :00 {00 !FO |ox20 al5]) p = a; 00 100 ;00 !FO |ox20 al5]
equivalent _
0x1lcC p = &a[0]; oxlcC
0x18 0x18
0x14 0x14
0x10 0x10
00 ' 00 '00 FO |oxoc @lo0] 00 |00 |00 'FO|oxoc 2l[0]
00 00 OB |AD | 0x08 00 ;00 0B ;AD | 0x08
0x04 00 (00 ;00 ;0C | 0x04 P
0x00 0x00
MM N MMM

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer. Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0x£f0; Address of a[1] is base address a Indexing: a[0] = 0x£f0; Address of a[1] is base address a
a[s] = a[ol; plus i times element size in bytes. a[s] = a[oJ; plus i times element size in bytes.
No bounds a[6] = OxXBAD; No bounds a[6] = OXBAD;
check: a[-1] = OXBAD; check: a[-1] = 0XBAD;
Pointers: int* p; 00 ;00 (OB [AD | 0x24 Pointers: int* p; 00 ;00 ;OB [AD | 0x24
walentJP = 27 00 ;00 {00 |FO |ox20 al53] valen JP = @ 00 .00 ;00 |FO |ox20 2al5]
equivalen b = sa[0]; 0x1C équivalen p = &a[0]; 0x1C
*p = OxA; 0x18 *p = 0xA; 0x18
0x14 0x14
0x10 0x10
00 100 |00 'FO |oxoc 2[0] 00 100 00 '0A]oxoc 2l0]
00 {00 ;0B |AD |0x08 00 ;00 0B AD | 0x08
00 ;00 (00 ;0C|Ox04 P 00 ;00 ;00 ;0C|Ox04 P
0x00 0x00
VAT M
29 30
Arrays are adjacent memory locations Arrays are adjacent memory locations
c- Arrays storing the same type of data. c- Arrays storing the same type of data.
. .
Declarati a is a name for the array’s base address, Declarati a is a name for the array’s base address,
eclaration: int a[6]; can be used as an immutable pointer. eclaration: int af6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[i] is base address a Indexing: a[0] = 0xf0; Address of a[1] is base address a
a[5] = a[oj; plus i times element size in bytes. a[5] = a[0]; plus i times element size in bytes.
No bounds a[6] = OxBAD; No bounds a[6] = 0xBAD;
check: a[-1] = 0xBAD; check: a[-1] = O0xBAD;
Pointers: int* p; 00 ;00 ;OB !AD | 0x24 Pointers: int* p; 00 ;00 ;OB !AD |0x24
valent{P = @7 00 :00 {00 |FO fox20 al5] walentJP = @ 00 :00 100 |FO|ox20 al5]
equivalenty © _ 2 1o1; ox1c equivalenty p = gago07; 0x1c
*p = OxA; 0x18 *p = 0xA; 0x18
0x14 0x14

p[l] = 0xB;

equlvalent{*(p + 1) = 0xB;

array indexing = address arithmetic
Both are scaled by the size of the type.

00 100 00 (0B |0x10
00 ' 00 |00 | 0A |oxoc 2al0]
00 00 0B |AD |0x08

00 100 00 .0C|ox04 P
0x00

*3
*2
*7
*o

pll] = 0xB;
*(p + 1) = 0xB;
p=p+2;

equivalent

array indexing = address arithmetic
Both are scaled by the size of the type.

00 100 .00 0B |o0x10
00 ' 00 |00 '0A |oxoc 2al0]
00 |00 OB !AD | 0x08

00 00 00 0C|0x04 P
0x00

*3
2
*7
*0

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0o] = 0xfo0; Address of a[1] is base address a
a[s] = a[ol; plus i times element size in bytes.
No bounds a[6] = OxXBAD;
check: a[-1] = O0xBAD;
Pointers: int* p; 00 ;00 (OB [AD | 0x24
. uiValent{p = a; 00 ;00 {00 |FO |ox20 al53]
q p = &a[0]; 0x1C
*p = 0xA; 0x18
0x14
equivalent p[l] = 0xB; 00 ;00 ;00 ;0B |0x10
a *(p + 1) = 0xB; 00 100 |00 ' 0A|oxoc @[O0l
p=p+2; 00 {00 |0B |AD | 0x08
00 ;00 00 ;14 | 0x04 P
array indexing = address arithmetic 0x00
Both are scaled by the size of the type. Hooy NS
* * * *

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

Declaration: int a[6]; can be used as an immutable pointer.
Indexing: a[0] = 0xf0; Address of a[1] is base address a
a[s] = a[oJ; plus i times element size in bytes.
No bounds a[6] = OxBAD;
check: a[-1] = OxBAD;
Pointers: int* p; 00 ;00 ;OB [AD | 0x24
. uiValem{p = a; 00 {00 00 |FO |ox20 al5]
a p = &a[0]; 0x1c
*p = OxA; 0x18
00 /00 00 |0C |0x14
ivalent pll] = 0xB; 00 ;00 ;00 ;0B |0x10
CAUVAENT Y «(p + 1) = 0xB; 00 100 100 |0A|oxoc al0]
p=p+ 2; 00 (00 ;0B (AD | 0x08
00 ;00 (00 ;14 |0x04 P
array indexing = address arithmetic 0x00
Both are scaled by the size of the type. Doy NS
X

*p = a[l] + 1;

Assume p has typeint *. Are "p[2]=5" and "*(p+2)=5" equivalent? What about "p[2]=5"
and “*p+2=5"7?

No; No.

No; Yes.

Yes; No.

Yes; Yes.

.. Start th on to see [. Forscreen ftware, share the entire screen. Get help at pollev.com/app

Assume p has typeint*.Are “p[2]=5" and "*(p+2)=5" equivalent? What about " p[2]=5"
and “*p+2=5"?
No; No.
0%
No; Yes.
0%
Yes; No.
0%
Yes; Yes.
0%
.. Start the presentation to see live content. For screen sh: s h . Get help at polls /i .-

u u

'

Assume p has typeint *. Are "p[2]=5" and “*(p+2)=5" equivalent? What about “p[2]=5"

and “*p+2=5"?

No; No.

No; Yes.

Yes; No.

Yes; Yes.

u Start the presentation to see live content. For screen sh: hare th

reen. Get help at poll

0%

0%

0%

0%

C: Array allocation
Basic Principle

T A[N];
Array of length N with elements of type Tand name A
Contiguous block of N*sizeof (T) bytes of memory

char string(12); [TTTTTTTTTTT]

Use sizeof to determine
proper size in C.

X)H!lZ

int val[5]; |[|]]] }
X x+4 x+8 x+12 x+16 x+20

double a[3]; | | | |
)I XIS leS x-JZA

char* p[3];

(orchar *p[31;) | I { | x86-64

>I xIS x+16 X+24

size depends on the
machine word size

C: Array access

Basic Principle
T A[N];
Array of length N with elements of type Tand name A
Identifier A has type T*

int val[5]; 0 2
X x+4 X

Expression Type Value

val[4] int 1

val int *

val+l int *

&val[2] int *

val[5] int

*(val+l) int

val + i int *

16

20

Representing strings

A C-style string is represented by an array of bytes (char).
— Elements are one-byte ASCII codes for each character.

— ASCIl = American Standard Code for Information Interchange

32 space 48 0 64 @ P 112 P
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \ 102 f 118 v
39 ! 55 7 71 G 87 w 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 | 121 y
42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 ;1 |7s K| |o1 [107 k | |123 {
44 B 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 B 62 > 78 N 94 A 110 n 126 ~
47 / 63 ? 79 o 95 _ 111 [127 del

C: Null-terminated strings

C strings: arrays of ASCII characters ending with null character.

'-

How many bytes does it take to store the null-terminated string "hi bye"?

1
\ Why?
|0x57|0x65|0x6C|0x6C|0x65|0x73 |0x6C|0x65|0x79|0x20|0x43 | 0x53| 0x00 |
3
W e 1 1 e st 1 e 'y ¢ s o
Does Endianness matter for strings?
5
int string_length(char str[]) {
6
7
} 8
41 .. Start the presentation to see live content. For screen reen. Get help at polls
m m m
How many bytes does it take to store the null-terminated string "hi bye"? 0 How many bytes does it take to store the null-terminated string "hi bye"? 0

0%

0%

0%

0%

0%

0%

Start th ion to see li . For screen sh: fty

, share the entire screen. Get help at pollev.com/app

Start the presentation to see live content. For screen sh he enti . Get help at poll /i

0%

0%

0%

0%

0%

0%

C:*and []

C programmers often use * where you might expect []:

e.g., char*:

« pointer to a char

« pointer to the first char in a string of unknown length

int stremp(char* a, char* b);

C:0vs. '"\0' vs. NULL

0 "\o'

Name: zero Name: null character

Type: int Type: char

Size: 4 bytes Size: 1 byte

Value: 0x00000000 Value: 0x00

Usage: The integer zero. Usage: Terminator for C strings.
NULL

Name: null pointer / null reference / null address

Type: void*

Size: 1 word (= 8 bytes on a 64-bit architecture)

Value: 0x00000000000000

Usage: The absence of a pointer where one is expected.
Address 0 is inaccessible, so *NULL is invalid; it crashes.

Is it important/necessary to encode the null character or the null pointer as 0x0?

What happens if a programmer mixes up these "zeroey" values?

Memory address-space layout

Addr
2N-1
Stackl
v
Heap
Statics
Literals
Text
0

Perm Contents Managed by
RW Procedure context Compiler
Dynamic Programmer,
RW v malloc/free, new/
data structures
GC
Global variables/ Compiler/
static data structures Assembler/Linker
. X Compiler/
R String literals
ing 1 Assembler/Linker
X Instructions e e

Assembler/Linker

Initialized

Run time

Run time

Startup

Startup

Startup

C: Dynamic memory allocation in the heap

Heap:
EENNEENEENEEEES e
— —

Allocated block Free block

Managed by memory allocator:

pointer to newly allocated block

of at least that size number of contiguous bytes required

N ¢

void* malloc(size t size);

void free(void* ptr);

\ pointer to allocated block to free

C: standard memory allocator

#include <stdlib.h>
void* malloc(size t size)
Allocates a memory block of at least size bytes and returns its address.

If memory error (e.g., allocator has no space left), returns NULL.
Rules:

Check for error result.

Cast result to relevant pointer type.

Use sizeof(...) to determine size.

void free(void* ptr)
Deallocates the block referenced by ptr,
making its space available for new allocations.

ptr must be amalloc result that has not yet been freed.
Rules:
ptr must be amalloc result that has not yet been freed.

Do not use *ptr after freeing.

C: Dynamic array allocation

printf("zip

printf ("
}
printf("\n"

free(zip);

#define ZIP_LENGTH 5

int* zip = (int*)malloc(sizeof(int)*ZIP_LENGTH);

if (zip == NULL) { // if error occurred 11 0x7£edd2400dd0
perror("malloc"); // print error message 8 | ox7fedd2400dcc
exit(0); // end the program 4] 0x7fedd2400dc8

} 2 0x7fedd2400dc4

0]| 0x7fedd2400dco

zip[0] = 0;

zip[l] = 2;

zip[2] = 4;

zip[3] = 8; o214 8] 12

zip[4] = 1; /

for (int i = 0; i < ZIP LENGTH; i++) {

zip | 0x7£edd2400dc0 |0x7£££58bddo38

+0 +4 +8 +12 +16 +20

is");
%d", zip[i]);

)i

C: Array of pointers to arrays of ints

zips[0]
zip0[0] =

[
zips[0][2]
zips[0][3]
zips[0][4]

zips[1]

zips[1][0]
zips[1][1]
zips[1](2]
zips[1][3]
zips[1][4]

zips[2]

int** zips = (int**)malloc(sizeof(int*) * 3);

= (int*)malloc(sizeof(int)*5);

int* zip0 = zips[0]; hy

0 o NULL?

Why terminate
with NULL?

= NULL; l ‘

Fill out the Pointers partner form (even if solo)

http://xkcd.com/138/

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?
0x3A28213A
0x6339232C,
Ox7363682E.
| HATE YOU. /

a3}

https://forms.gle/kmL62aTcm9Nh3xjG9

http://xkcd.com/138/
https://forms.gle/kmL62aTcm9Nh3xjG9

Zip code

zips
0x10004380 | 0x10008900 | 0x00000000

— ~
Lofefelefef [ofr]fo]efs]

// return a count of all zips that end with digit endNum
int zipCount(int* zips[], int endNum) {

scanf reads formatted input

int val; Declared, but not initialized.
Holds anything.

Read one int
in decimaly, format
from input.

at this address.

O0x7FFFFFFFFFFFFF3C
OxX7FFFFFFFFFFFFF38
OxX7FFFFFFFFFFFFF34

val|CA FE 12 34

Store in memory at the address
given by the address of val:
store input @ 0x7F..F38.

C: Classic bug using scanf

int val; ﬁ Declared, but not initialized.

Holds anything.] Store in memory at the address

given by the contents of val
(implicitly cast as a pointer):
store input @ 0xBADAFACE.

scanf ("%d",

val);

Read one int . .
. Best case: ! crash immediately

in decimal;, format

Store it in memory
at this address.

from input.

0x7FFFFFFFFFFFFF3C

val| BA D4 FA CE| Ox7FFFFFFFFFFFFF38
Ox7FFFFFFFFFFFFF34

CA FE 12 34 0x00000000BAD4FACE

with segmentation fault/bus error.

Bad case: @ silently corrupt data
stored @ 0xBAD4FACE,

fail to store input in val,

and keep going.

Worst case: ™)¢ %
program does literally anything.

C: Memory error messages

11: segmentation fault ("segfault", SIGSEGV)
accessing address outside legal area of memory
10: bus error (SIGBUS)
accessing misaligned or other problematic address

More to come on debugging!

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YOU
HOHP ,§ FALLING ASLEER AND NISSTER, STUMBLE,
{0H? YOU IMAGINE YOURSELF | AND JOLT AVAKE?
BERORE YoU WALKING OR YEAH!
HIT COMPLLE; WY SONETHING, ik ;f
LISTEN Up,

http://xkcd.com/371/

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

N
DOUBLE - CHECK YOUR
DAMN POINTERS, OKAY?

 Sul

C: Why?

Why learn C?

« Think like actual computer (abstraction close to machine level) without dealing
with machine code.

« Understand just how much Your Favorite Language provides.

« Understand just how much Your Favorite Language might cost.

» Classic.

o Still (more) widely used (than it should be).

« Pitfalls still fuel devastating reliability and security failures today.

Why not use C?
« Probably not the right language for your next personal project.
« It "gets out of the programmer's way” ... even when the programmer is unwittingly
running toward a cliff.
« Advances in programming language design since the 70’s have produced languages
that fix C's problems while keeping strengths.

Group example: longest string starts with

strings
0x10004380 | 0x10008900 | 0x00000000
~
1o T [+

iqr
// Return the starting character of the longest string in the
// null-terminated strings array.

// You can use: int strlen(char *str)

char longest_string starts_with(char ** strings) {

iq ‘i"\0’| output: ‘h’

Group example: longest string starts with

// Return the starting character of the longest string in the
// null-terminated strings array.
// You can use: int strlen(char *str)
char longest_string_starts_with(char ** strings) {
int longest = 0;
char ¢ = '"\0';
while (*strings) {
int 1 = strlen(*strings);
if (1 > longest) {
longest = 1;
c = *(*strings);
}
strings++;
}

return c;

