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Operating Systems 
and the Process Model

Process model

Process management

(Unix/Linux/macOS)
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Why doesn’t this program disable my laptop entirely?


int main() {

    while (true) {

    }

}

Motivation Operating Systems
Problems: 

• The overall system shouldn’t go down for one bad program

• One set of resources, many different software programs!

• The hardware itself varies across computers


Solution: operating system

Manage, abstract, and virtualize hardware resources 


Share limited resources among varied software programs

Protect (from both accidental and malicious damage) 

Simpler, common interface to varied hardware
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Operating Systems, a 240 view

Key abstractions provided by kernel


processes

virtual memory


Virtualization mechanisms and hardware support:

context-switching

exceptional control flow

memory isolation, address translation, paging
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barely scraping the surface! Processes
Program = code (static)

Process = a running program instance (dynamic)


code + state (contents of registers, memory, other resources)


Key illusions:

Logical control flow 


Each process seems to have exclusive use of the CPU 


Private address space 

Each process seems to have exclusive use of full memory


Why?	How?
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This unit (parts)

Not in detail this semester 

But read optional slides & CSAPP!

The kernel manages processes 
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CPU Memory Devices

…Process Process Process 

The kernel 

The kernel:

Runs with full machine privilege


On x86: special %cs register

Can interrupt processes 

Manages sharing of resources


Is a program (almost*) like any other!

Implementing logical control flow
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Abstraction: every process has full control over the CPU

time

Process A Process B Process C

Implementation: time-sharing

Process A Process B Process C

time



Context Switching
Kernel (shared OS code) switches between processes


Control flow passes between processes via context switch.

Context =
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Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

fork
pid_t fork()


1. Clone current parent process to create identical* child process, including all state 
(memory, registers, program counter, …).


2. Continue executing both copies with one difference:

• returns 0 to the child process

• returns child’s process ID (pid) to the parent process


fork is unique: called in one process, returns in two processes!  

	 	 	 	 	        (once in parent, once in child)
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*almost. See man 3 fork for exceptions.

pid_t pid = fork();

if (pid == 0) {

   printf("hello from child\n");

} else {

   printf("hello from parent\n");

}
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pid_t pid = fork();

if (pid == 0) {

   printf("hello from child\n");

} else {

   printf("hello from parent\n");

}
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Creating a new process with fork
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Process n

Child Process m
pid_t pid = fork();

if (pid == 0) {

   printf("hello from child\n");

} else {

   printf("hello from parent\n");

}

1
pid_t pid = fork();

if (pid == 0) {

   printf("hello from child\n");

} else {

   printf("hello from parent\n");

}

 m  0
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pid_t pid = fork();

if (pid == 0) {

   printf("hello from child\n");

} else {

   printf("hello from parent\n");

}

pid_t pid = fork();

if (pid == 0) {

   printf("hello from child\n");

} else {

   printf("hello from parent\n");

}

execution

fork!

hello from parent Which prints first? hello from child
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fork and private copies
Parent and child continue from private copies of same state.


Memory contents (code, globals, heap, stack, etc.), 
Register contents, program counter, file descriptors…
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Only difference: return value from fork()


Relative execution order of parent/child after fork() undefined

void fork1() {

  int x = 1;

  pid_t pid = fork();

  if (pid == 0) {

    printf("Child has x = %d\n", ++x);

  } else {

    printf("Parent has x = %d\n", --x);

  }

  printf("Bye from process %d with x = %d\n", getpid(), x);

}

fork-exec
fork()	clone current process


execv()	 replace process code and context (registers, 
memory) 
	 	 with a fresh program.


	 See man 3 execv, man 2 execve
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// Example arguments: path="/usr/bin/ls”,

//   argv[0]="/usr/bin/ls”, argv[1]="-ahl", argv[2]=NULL

void fork_exec(char* path, char* argv[]) {

    pid_t pid = fork();

    if (pid != 0) {

        printf("Parent: created a child %d\n”, pid);

    } else {

        printf("Child: exec-ing new program now\n");

        execv(path, argv);

    }

    printf("This line printed by parent only!\n");

}



Executing a new program
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Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork():

exec():

Running the command ls in a shell:

parent child child

Code/state of shell process.

Copy of code/state 
of shell process.

Replaced by code/state of ls.

Code/state of shell process.

1

2 2 3

Null-terminated

env var strings

unused

Null-terminated

argument strings

envp[n] == NULL
envp[n-1]

envp[0]
…

Linker vars

argv[argc] == NULL
argv[argc-1]

argv[0]
…

envp

argc
argv

Stack bottom

Stack frame for 

main Stack top

execv: load/start a program
int execv(char* filename,char* argv[])


Loads/starts program in current process:

Executable filename

With argument list argv


Overwrites code, data, and stack

Keeps pid, open files, a few other items 


Does not return

unless error


Also sets up environment.  See also: execve.
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exit: end a process
void exit(int status)


End process with status: 0 = normal, nonzero = error.

atexit() registers functions to be executed upon exit
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wait for child processes to terminate

pid_t waitpid(pid_t pid, int* stat, int ops)

Suspend current process (i.e. parent) until child with pid ends.

On success:

	 Return pid when child terminates.


Reap child.

	 If stat != NULL, waitpid saves termination reason where it points.


See also: man 3 waitpid
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waitpid example
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void fork_wait() {

  int child_status;

  pid_t child_pid = fork();


  if (child_pid == 0) {

    printf("HC: hello from child\n");

  } else {

    if (-1 == waitpid(child_pid, &child_status, 0)) {

      perror("waitpid");

      exit(1);

    }

    printf("CT: child %d has terminated\n”, child_pid);

  }

  printf("Bye\n");

  exit(0);

}

exWhat is printed, in what order?
 waitpid example
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void fork_wait() {

  int child_status;

  pid_t child_pid = fork();


  if (child_pid == 0) {

    printf("HC: hello from child\n");

  } else {

    if (-1 == waitpid(child_pid, &child_status, 0)) {

      perror("waitpid");

      exit(1);

    }

    printf("CT: child %d has terminated\n”, child_pid);

  }

  printf("Bye\n");

  exit(0);

}

HCBye

CTBye

ex

HC: hello from child

Bye

CT: child 1 has terminated

Bye

Printed:

Zombies!
Terminated process still consumes system resources


Reaping with wait/waitpid


What if parent doesn’t reap?

If any parent terminates without reaping a child, then child will be 
reaped by systemd/init process (pid == 1)

What if parent runs a long time?  e.g., shells and servers
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Error-checking
Check return results of system calls for errors! (No exceptions.)

Read documentation for return values.

Use perror to report error, then exit.


void perror(char* message)

Print "<message>: <reason that last system call failed.>"
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Summary

Processes

System has multiple active processes

Each process:


Appears to have total control of the processor

Has isolated access to its own data (usually)


OS periodically “context switches” between active processes


Process management

fork, execv, waitpid
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time
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/*

    Write a C function that creates a child fork that creates a

    grandchild fork. Make the program print "Hello from grandchild"

    from the grandchild, then "Hello from child" from the child,

    making sure these statements happen in this order.

*/

void wait_for_grandchild() {


}

exExercise: fork + waitpid

pid_t waitpid(pid_t pid, int* stat, int ops)

1. Implement the following function using fork and wait:
pid_t fork() Hint: pass 0 for ops
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void wait_for_grandchild() {

  int status;

  // Fork once to create child

  pid_t child_pid = fork();

  // Only fork again if in the child thread

  if (child_pid == 0) {

    // Fork again to create grandchild

    pid_t grand_child_pid = fork();

    if (grand_child_pid == 0) {

        // Print from inside the grandchild

        printf("Hello from grandchild\n");

    } else {

      // In the child, wait until the grandchild has printed

      if (-1 == waitpid(grand_child_pid, &status, 0)) {

        perror("waitpid");

        exit(1);

      }

      printf("Hello from child\n");

    }

  } else {

     if (-1 = waitpid(child_pid, &status, 0) {… final error check }

}}

ex


