Program, Application

CS 240 WELLESLEY
Foundations of Computer Systems Qv Programming Language
()
E Compiler/Interpreter
e
Operating Systems = Operating System
and the Process Model Instruction Set Architecture]
Process model v Microarchitecture
Process management (o]
(Unix/Linux/macOS) S Digital Logic
©
:
I
https://cs.wellesley.edu/~cs240/ 1 Solid-State Physics
Motivation Operating Systems
Problems:

Why doesn’t this program disable my laptop entirely?

int main () {
while (true) {

}

e The overall system shouldn’t go down for one bad program
* One set of resources, many different software programs!
* The hardware itself varies across computers

Solution: operating system

Manage, abstract, and virtualize hardware resources
Share limited resources among varied software programs
Protect (from both accidental and malicious damage)
Simpler, common interface to varied hardware

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Operating Systems, a 240 view

Key abstractions provided by kernel

o

processes
virtual memory

context-switching

® O i

exceptional control flow

20,

memory isolation, address translation, paging

(>
@ @ 9

Virtualization mechanisms and hardware support:

Processes

Program = code (static)

Process = a running program instance (dynamic)
code + state (contents of registers, memory, other resources)

Key illusions:

Logical control flow
Each process seems to have exclusive use of the CPU

= ster
- il this seme
n detall 10 e & CSAPP!

Private address space Not in det
gut read option?

Each process seems to have exclusive use of full memory

Why? How?

The kernel manages processes

The kernel:
Process Process Process

Runs with full machine privilege

t t t On x86: special cs register
Can interrupt processes

The kernel X
Manages sharing of resources
— Memory N Is a program (almost*) like any other!

Implementing logical control flow

Abstraction: every process has full control over the CPU

Process A Process B Process C

time 1

Implementation: time-sharing

Process A Process B Process C

I
time |

L

Context Switching

Kernel (shared OS code) switches between processes

Control flow passes between processes via context switch.

Context =

1

Process A \ Process B

1

1

: user code

. kernel code } context switch
time user code

kernel code } context switch

user code

fork

pid_t fork()
1. Clone current parent process to create identical* child process, including all state
(memory, registers, program counter, ...).
2. Continue executing both copies with one difference:
« returns 0 to the child process

« returns child’s process ID (pid) to the parent process

pid t pid = fork();

if (pid == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

fork is unique: called in one process, returns in two processes!

(once in parent, once in child)

*almost. Seeman 3 fork for exceptions.

Which full line of code is executed twice, once in the parent and once in the child?

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n")

. For screen sh: fty

reen. Get help at pollev.com/app

.. Start th ion to see li

, share the enti

’

Creating a new process with fork

Process n
» pid t pid = fork();
if (pid == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");

} Child Process m

pid t pid = fork(); = m pid t pid = fork(); = 0
if (pid == 0) { »;f (pid == 0) {
printf("hello from child\n"); printf ("hello from child\n");
z } else { } else {
printf("hello from parent\n"); printf ("hello from parent\n");
} }

pid t pid = fork(); pid t pid = fork();

3 if (id == 0) { if (pid == 0) {
printf ("hello from child\n"); » printf("hello from child\n");:
} else { } else {

. printf("hello from parent\n"); printf("hello from parent\n");

} }

Which prints first?

hello from parent hello from child

Which line prints first?

"hello from parent"

"hello from child"

it depends

they print at the exact same time

Recall: what is different about how a call to "fork" returns for the parent vs the child?

The child returns immediately, the parent waits.

The parent returns immediately, the child waits.

The child gets process ID 0, the parent gets non-zero.

The parent gets process ID 0, the child gets non-zero.

None of the above
.. Start the presentation to see live content. For screen sh: ft hare the il reen. Get help at .- Start the presentation to see live content. For screen), i reen. Get help at poll ..
. .
fork and private copies fork-exec

Parent and child continue from private copies of same state.
Memory contents (code, globals, heap, stack, etc.),

Register contents, program counter, file descriptors...
Only difference: return value from fork ()
Relative execution order of parent/child after fork () undefined

void forkl () {

int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);

}

printf ("Bye from process %d with x

$d\n", getpid(), x);

fork () clone current process

execv () replace process code and context (registers,
memory)

with a fresh program.

See man 3 execv, man 2 execve

// Example arguments: path="/usr/bin/ls”,
// argv[0]="/usr/bin/ls”, argv[l]="-ahl", argv[2]=NULL
void fork exec(char* path, char* argv([]) {
pid t pid = fork();
if (pid != 0) {
printf ("Parent: created a child %d\n”, pid);
} else {
printf ("Child: exec-ing new program now\n");
execv (path, argv);
}
printf ("This line printed by parent only!\n");

Running the command 1s in a shell:

Executing a new program

1 Code/state of shell process.
—
Replaced by code/state of Is.

Copy of code/state
of shell process.
/

fork(): | \
parent | child

Stack
Stack
-~
‘ exec():
—p
Heap
Data Data
Code: /usr/bin/bash Code: /usr/bin/Is

Code/state of shell process.

execv: load/start a program

int execv(char* filename,char* argv[])

Stack bottom

Null-terminated
argument strings

Loads/starts program in current process:
unused
Executable £ilename
With argument list argv
overwrites code, data, and stack
Keeps pid, open files, a few other items

argv[argc] == NULL
argv[argc-1]

Does not return
unless error
argv[0]
Linker vars
envp
argv

argc
Stack frame for
main Stack top

Also sets up environment. See also: execve.

exit: end a process

void exit (int status)
End process with status: 0 = normal, nonzero = error.

atexit () registers functions to be executed upon exit

wailt for child processes to terminate

pid_t waitpid(pid_t pid, int* stat, int ops)
Suspend current process (i.e. parent) until child with pid ends.

On success:
Return pid when child terminates.

Reap child.

If stat !'= NULL, waitpid saves termination reason where it points.

See also:man 3 waitpid

wai tpid examp|e What is printed, in what order?
void fork wait() {
int child status;
pid t child pid fork () ;
if (child _pid == 0) {
printf ("HC: hello from child\n");
} else {
if (-1 == waitpid(child pid, &child status, 0)) {
perror ("waitpid") ;
exit(1l);

}

printf ("CT: child %d has terminated\n”, child pid);
}
printf ("Bye\n") ;
exit (0);

- - HCBye
waitpid example
CTBye
void fork wait() {
int child status;
pid t child pid = fork(); Printed:
f (child pid 0) { HC: hello from child
printf ("HC: hello from child\n");
} else { Bye
if (7% ::,.Yaitpid.sC:];ld’;; 1, &child_status, 0)) { CT: child 1 has terminated
perror ("waitpid") ;
exit(1); Bye
}
printf ("CT: child %d has terminated\n”, child pid);

printf ("Bye\n") ;
exit (0);
}

Zombies!
Terminated process still consumes system resources

X

Reaping with wait/waitpid

What if parent doesn’t reap?

If any parent terminates without reaping a child, then child will be
reaped by systemd/init process (pid == 1)

What if parent runs a long time? e.g., shells and servers

23

Error-checking

Check return results of system calls for errors! (No exceptions.)
Read documentation for return values.
Use perror to report error, then exit.

void perror (char* message)
Print "<message>: <reason that last system call failed.>"

Summary

Processes
System has multiple active processes
Each process:
Appears to have total control of the processor

time : .
Has isolated access to its own data (usually)

OS periodically “context switches” between active processes

Process management

fork, execv, waitpid

Exercise: fork + waitpid

1. Implement the following function using fork and wait:
pid_t fork() Hint: pass 0 for ops
pid_t waitpid(pid t pid, int* stat, int ops)

/*
Write a C function that creates a child fork that creates a
grandchild fork. Make the program print "Hello from grandchild"
from the grandchild, then "Hello from child" from the child,
making sure these statements happen in this order.

*/

void wait for grandchild() {

void wait for grandchild() {
int status;
// Fork once to create child
pid_t child pid = fork();
// Only fork again if in the child thread
if (child pid == 0) {
// Fork again to create grandchild
pid_t grand_child pid = fork();
if (grand_child pid == 0) {
// Print from inside the grandchild
printf ("Hello from grandchild\n");
} else {
// In the child, wait until the grandchild has printed
if (-1 == waitpid(grand_child pid, &status, 0)) {
perror ("waitpid");
exit (1) ;
}
printf ("Hello from child\n");
}
} else {
if (-1 = waitpid(child pid, &status, 0)
I

27

