
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Operating Systems 
and the Process Model

Process model

Process management

(Unix/Linux/macOS)

1 OS Process Model

Devices (transistors, etc.)

Solid-State Physics

Ha
rd

w
ar

e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

So
ft

w
ar

e

2

3

Why doesn’t this program disable my laptop entirely?

int main() {

 while (true) {

 }

}

Motivation Operating Systems
Problems:

• The overall system shouldn’t go down for one bad program

• One set of resources, many different software programs!

• The hardware itself varies across computers

Solution: operating system

Manage, abstract, and virtualize hardware resources

Share limited resources among varied software programs

Protect (from both accidental and malicious damage)

Simpler, common interface to varied hardware

4

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

stock.adobe.com

Operating Systems, a 240 view

Key abstractions provided by kernel

processes

virtual memory

Virtualization mechanisms and hardware support:

context-switching

exceptional control flow

memory isolation, address translation, paging

5

barely scraping the surface! Processes
Program = code (static)

Process = a running program instance (dynamic)

code + state (contents of registers, memory, other resources)

Key illusions:

Logical control flow

Each process seems to have exclusive use of the CPU

Private address space

Each process seems to have exclusive use of full memory

Why?	How?

6

This unit (parts)

Not in detail this semester 

But read optional slides & CSAPP!

The kernel manages processes

7

CPU Memory Devices

…Process Process Process

The kernel

The kernel:

Runs with full machine privilege

On x86: special %cs register

Can interrupt processes

Manages sharing of resources

Is a program (almost*) like any other!

Implementing logical control flow

8

Abstraction: every process has full control over the CPU

time

Process A Process B Process C

Implementation: time-sharing

Process A Process B Process C

time

Context Switching
Kernel (shared OS code) switches between processes

Control flow passes between processes via context switch.

Context =

9

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

fork
pid_t fork()

1. Clone current parent process to create identical* child process, including all state
(memory, registers, program counter, …).

2. Continue executing both copies with one difference:

• returns 0 to the child process

• returns child’s process ID (pid) to the parent process

fork is unique: called in one process, returns in two processes!

	 	 	 	 	 (once in parent, once in child)

10
*almost. See man 3 fork for exceptions.

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

11

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

2

Creating a new process with fork

12

Process n

Child Process m
pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

1
pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

 m  0

3
pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

execution

fork!

hello from parent Which prints first? hello from child

13 14

fork and private copies
Parent and child continue from private copies of same state.

Memory contents (code, globals, heap, stack, etc.), 
Register contents, program counter, file descriptors…

15

Only difference: return value from fork()

Relative execution order of parent/child after fork() undefined

void fork1() {

 int x = 1;

 pid_t pid = fork();

 if (pid == 0) {

 printf("Child has x = %d\n", ++x);

 } else {

 printf("Parent has x = %d\n", --x);

 }

 printf("Bye from process %d with x = %d\n", getpid(), x);

}

fork-exec
fork()	clone current process

execv()	 replace process code and context (registers,
memory) 
	 	 with a fresh program.

	 See man 3 execv, man 2 execve

16

// Example arguments: path="/usr/bin/ls”,

// argv[0]="/usr/bin/ls”, argv[1]="-ahl", argv[2]=NULL

void fork_exec(char* path, char* argv[]) {

 pid_t pid = fork();

 if (pid != 0) {

 printf("Parent: created a child %d\n”, pid);

 } else {

 printf("Child: exec-ing new program now\n");

 execv(path, argv);

 }

 printf("This line printed by parent only!\n");

}

Executing a new program

17

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork():

exec():

Running the command ls in a shell:

parent child child

Code/state of shell process.

Copy of code/state
of shell process.

Replaced by code/state of ls.

Code/state of shell process.

1

2 2 3

Null-terminated

env var strings

unused

Null-terminated

argument strings

envp[n] == NULL
envp[n-1]

envp[0]
…

Linker vars

argv[argc] == NULL
argv[argc-1]

argv[0]
…

envp

argc
argv

Stack bottom

Stack frame for

main Stack top

execv: load/start a program
int execv(char* filename,char* argv[])

Loads/starts program in current process:

Executable filename

With argument list argv

Overwrites code, data, and stack

Keeps pid, open files, a few other items

Does not return

unless error

Also sets up environment. See also: execve.

18

exit: end a process
void exit(int status)

End process with status: 0 = normal, nonzero = error.

atexit() registers functions to be executed upon exit

19

wait for child processes to terminate

pid_t waitpid(pid_t pid, int* stat, int ops)

Suspend current process (i.e. parent) until child with pid ends.

On success:

	 Return pid when child terminates.

Reap child.

	 If stat != NULL, waitpid saves termination reason where it points.

See also: man 3 waitpid

20

waitpid example

21

void fork_wait() {

 int child_status;

 pid_t child_pid = fork();

 if (child_pid == 0) {

 printf("HC: hello from child\n");

 } else {

 if (-1 == waitpid(child_pid, &child_status, 0)) {

 perror("waitpid");

 exit(1);

 }

 printf("CT: child %d has terminated\n”, child_pid);

 }

 printf("Bye\n");

 exit(0);

}

exWhat is printed, in what order?
 waitpid example

22

void fork_wait() {

 int child_status;

 pid_t child_pid = fork();

 if (child_pid == 0) {

 printf("HC: hello from child\n");

 } else {

 if (-1 == waitpid(child_pid, &child_status, 0)) {

 perror("waitpid");

 exit(1);

 }

 printf("CT: child %d has terminated\n”, child_pid);

 }

 printf("Bye\n");

 exit(0);

}

HCBye

CTBye

ex

HC: hello from child

Bye

CT: child 1 has terminated

Bye

Printed:

Zombies!
Terminated process still consumes system resources

Reaping with wait/waitpid

What if parent doesn’t reap?

If any parent terminates without reaping a child, then child will be
reaped by systemd/init process (pid == 1)

What if parent runs a long time? e.g., shells and servers

23

Error-checking
Check return results of system calls for errors! (No exceptions.)

Read documentation for return values.

Use perror to report error, then exit.

void perror(char* message)

Print "<message>: <reason that last system call failed.>"

24

Summary

Processes

System has multiple active processes

Each process:

Appears to have total control of the processor

Has isolated access to its own data (usually)

OS periodically “context switches” between active processes

Process management

fork, execv, waitpid

25

time

26

/*

 Write a C function that creates a child fork that creates a

 grandchild fork. Make the program print "Hello from grandchild"

 from the grandchild, then "Hello from child" from the child,

 making sure these statements happen in this order.

*/

void wait_for_grandchild() {

}

exExercise: fork + waitpid

pid_t waitpid(pid_t pid, int* stat, int ops)

1. Implement the following function using fork and wait:
pid_t fork() Hint: pass 0 for ops

27

void wait_for_grandchild() {

 int status;

 // Fork once to create child

 pid_t child_pid = fork();

 // Only fork again if in the child thread

 if (child_pid == 0) {

 // Fork again to create grandchild

 pid_t grand_child_pid = fork();

 if (grand_child_pid == 0) {

 // Print from inside the grandchild

 printf("Hello from grandchild\n");

 } else {

 // In the child, wait until the grandchild has printed

 if (-1 == waitpid(grand_child_pid, &status, 0)) {

 perror("waitpid");

 exit(1);

 }

 printf("Hello from child\n");

 }

 } else {

 if (-1 = waitpid(child_pid, &status, 0) {… final error check }

}}

ex

