
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Shells and Signals

1

shell: program that runs other programs

2

3

Shells and the process hierarchy

4

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon

e.g. httpd

init [1]

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Shell summary
Program that runs other programs on behalf of the user

Typically via the “command line interface” (CLI)

5

Example: Mac (zsh)

Example: CSLinux (bash)

Example shells

sh 	 Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

bash 	 “Bourne-Again” Shell, widely used, default on most Unix/Linux systems

zsh 	 Pronounced “z shell”, newer, now default on newer Mac systems

Windows 	 Default on Windows systems

Terminal 	

many others…

Shell implementation (Concurrency assignment)
Shell high-level design:

1. Wait for input from the user. Print the “command prompt” to indicate readiness.
2. Read in a command from the user, parse it (Pointers assignment)
3. Execute the command, either by:

1. If a built-in command, do it.
2. Otherwise, create a child process to run the command (fork call)

6

while (true)

 Print command prompt.

 Read command line from user.

 Parse command line.

 If command is built-in, do it.

 Else fork process to execute command.

 in child:

 Exec requested command (never returns)

 in parent:

 Wait for child to complete.

Pseudocode:

cd is built-in

echo is not built-in

Terminal ≠ shell

Terminal is the user interface to shell and other programs.

Graphical (GUI) vs. command-line (CLI)

7

The shell itself does not control
pixels, it manipulates strings

To wait or not to wait?
A foreground job is a process for which the shell waits.*

8

$ emacs fizz.txt # shell waits until emacs exits.

Foregound jobs get input from (and "own") the terminal. Background jobs do not.

$ emacs boom.txt & # emacs runs in background.

[1] 9073 # shell saves background job and is…

$ gdb ./umbrella # immediately ready for next command.

A background job is a process for which the shell does not wait*… yet.

Signals
Signal: small message notifying a process of event in system

like exceptions and interrupts

sent by kernel, sometimes at request of another process

ID is entire message

9

ID Name Corresponding Event Default Action Can Override?
2 SIGINT Interrupt (Ctrl-C) Terminate Yes
9 SIGKILL Kill process (immediately) Terminate No

11 SIGSEGV Segmentation violation Terminate & Dump Yes
14 SIGALRM Timer signal Terminate Yes
15 SIGTERM Kill process (politely) Terminate Yes
17 SIGCHLD Child stopped or terminated Ignore Yes
18 SIGCONT Continue stopped process Continue (Resume) No
19 SIGSTOP Stop process (immediately) Stop (Suspend) No
20 SIGTSTP Stop process (politely) Stop (Suspend) Yes

…

optional Sending/receiving a signal
Kernel sends (delivers) a signal to a destination process 
by updating state in the context of the destination process.

Reasons:

System event, e.g. segmentation fault (SIGSEGV)

Another process used kill system call: 
explicitly request the kernel send a signal to the destination process

Destination process receives signal when kernel forces it to react.

Reactions:

Ignore the signal (do nothing)

Terminate the process (with optional core dump)

Catch the signal by executing a user-level function called signal handler

Like an impoverished Java exception handler

10

optional

Signals handlers as concurrent flows

Signal handlers run concurrently with main program 
(in same process).

11

Process A

while (1)

 ;

Process A

handler(){

 …

}

Process B

Time

optional Another view of signal handlers as concurrent flows

12

Signal delivered

Signal received

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

optional

Pending and blocked signals
A signal is pending if sent but not yet received

<= 1 pending signal per type per process

No Queue! Just a bit per signal type.

Signals of type S discarded while process has S signal pending.

A process can block the receipt of certain signals

Receipt delayed until the signal is unblocked

A pending signal is received at most once

13

Let's draw a picture...

optional Process Groups
Every process belongs to exactly one process group (default: parent's group)

14

Foreground

job

Background

job #1

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process group 32

Background

process group 40

pid=20

pgid=20 pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp() 
Return process group of current process

setpgid() 
Change process group of a process

optional

Background

job #2

Sending signals from the keyboard
Shell: Ctrl-C sends SIGINT (Ctrl-Z sends SIGTSTP) 
 to every job in the foreground process group.

SIGINT – default action is to terminate each process

SIGTSTP – default action is to stop (suspend) each process

15

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process group 32

Background

process group 40

pid=20

pgid=20

pid=32

pgid=32

pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

optional Signal demos
Ctrl-C

Ctrl-Z

kill

kill(pid, SIGINT);

16

optional

A program that reacts to 
externally generated events (Ctrl-c)

17

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

void handler(int sig) {

 safe_printf("You think hitting ctrl-c will stop me?\n");

 sleep(2);

 safe_printf("Well...");

 sleep(1);

 printf("OK\n");

 exit(0);

}

main() {

 signal(SIGINT, handler); /* installs ctrl-c handler */

 while(1) {

 }

}

external.c

> ./external

<ctrl-c>

You think hitting ctrl-c will stop me?

Well...OK

>

optional A program that reacts to internally generated events

18

#include <stdio.h>

#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler(int sig) {

 safe_printf("BEEP\n");

 if (++beeps < 5)

 alarm(1);

 else {

 safe_printf("DING DING!\n");

 exit(0);

 }

}

main() {

 signal(SIGALRM, handler);

 alarm(1); /* send SIGALRM in

 1 second */

 while (1) {

 }

}

> ./internal

BEEP

BEEP

BEEP

BEEP

BEEP

DING DING!

>

internal.c

optional

Signal summary

Signals provide process-level exception handling

Can generate from user programs

Can define effect by declaring signal handler

Some caveats

Very high overhead

>10,000 clock cycles

Only use for exceptional conditions

Not queued

Just one bit for each pending signal type

Many more complicated details we have not discussed.

Book goes into too much gory detail.

19

optional

