WELLESLEY
CS 240

Foundations of Computer Systems

Shells and Signals

https://cs.wellesley.edu/~cs240/

shell: program that runs other programs

LICN @ avh — -zsh — 80x24
avh ~ $ pwd

/Users/avh

avh ~ § echo "hello cs240"

hello cs24@
avh ~ § sleep 1
avh ~ 8 sleep 1; echo "hello"

hello
avh ~ $ (sleep 4; echo "hello")&

[1] 29371

avh ~ $ hello

[1] + done (sleep 4; echo "hello";
avh ~ $ (sleep 5; echo "hello")&

[1] 29577

avh ~ § (sleep 16; echo "hello")&

[2] 29648

avh ~ $ hello

[1] - done (sleep 5; echo "hello";
avh ~ $ hello

[2]1 + done (sleep 10; echo "hello";
avh ~ $ I

" s

How many child threads are there at this point for this shell?

1 (foreground)

2 (1 foreground, 1 background)

3 (2 foreground, 1 background)

3 (1 foreground, 2 background)

None of the above

.. Start th ion to see . For screen ftware, share the entire screen. Get help at poll ..

Shells and the process hierarchy

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Shell summary

Program that runs other programs on behalf of the user

Example: Mac (zsh)
Typically via the “command line interface” (CLI)

[] @® [avh — -zsh — 32x5

Toners o
Example shells /b/shﬂh -
sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
bash “Bourne-Again” Shell, widely used, default on most Unix/Linux systems
zsh Pronounced “z shell”, newer, now default on newer Mac systems
Windows Default on Windows systems Example: CSLinux (bash)

Te inal [] [] avh —avh@cs:~ — ssh avh@cs.wellesley.edu —...
avh ~ § ssh avh@cs.wellesley.edu

Last login: Fri Mar 8 22:32:21 2024 from 73.17.106.151
[avhecs ~] pwd

/home/avh

[avh@cs ~] echo SSHELL

/bin/bash

Cavhecs ~1 [

many others..

) @® 7 avh — avh@cs:~ -

Shell implementation
Shell high-level design:

1. Wait for input from the user. Print the “command prompt” to indicate readiness.
2. Read in a command from the user, parse it (Pointers assignment)

d is built-in
3. Execute the command, either by: S
1. If a built-in command, do it. ., - : jUSers...
2. Otherwise, create a child process to run the command (fork call) ovh /usors $'l

Pseudocode:

while (true)
Print command prompt.
Read command line from user.
Parse command line.
If command is built-in, do it. @ ® @ [avh — avh@cs:~ — -2sh — 41x5
Else fork process to execute command. Uh = § echo “this Tuns in the child"
in anld: th‘lsNrunD in the child
Exec requested command (never returns)
in parent:
Wait for child to complete.

echo is not built-in

Terminal # shell

Terminal is the user interface to shell and other programs.
Graphical (GUI) vs. command-line (CLI)

Terminal
The shell itself does not control
pixels, it manipulates strings

To wait or not to wait?
A foreground job is a process for which the shell waits.*

$ emacs fizz.txt # shell waits until emacs exits.

A background job is a process for which the shell does not wait*... yet.

$ emacs boom.txt & # emacs runs in background.
[1] 9073 # shell saves background job and is..
$ gdb ./umbrella # immediately ready for next command.

Foregound jobs get input from (and "own") the terminal. Background jobs do not.

Signals

Signal: small message notifying a process of event in system
like exceptions and interrupts
sent by kernel, sometimes at request of another process
ID is entire message

ID Name Corresponding Event Default Action Can Override?
2 SIGINT Interrupt (Ctrl-C) Terminate Yes
9 SIGKILL Kill process (immediately) Terminate No

11 SIGSEGV Segmentation violation Terminate & Dump Yes

14 SIGALRM Timer signal Terminate Yes
15 SIGTERM Kill process (politely) Terminate Yes
17 SIGCHLD Child stopped or terminated Ignore Yes
18 SIGCONT Continue stopped process Continue (Resume) No
19 SIGSTOP Stop process (immediately) Stop (Suspend) No
20 SIGTSTP Stop process (politely) Stop (Suspend) Yes

[optianall

Sending/receiving a signal

Kernel sends (delivers) a signal to a destination process
by updating state in the context of the destination process.

Reasons:
System event, e.g. segmentation fault (SIGSEGV)

Another process used kill system call:
explicitly request the kernel send a signal to the destination process

Destination process receives signal when kernel forces it to react.

Reactions:
Ignore the signal (do nothing)
Terminate the process (with optional core dump)
Catch the signal by executing a user-level function called signal handler
Like an impoverished Java exception handler

Signals handlers as concurrent flows

Signal handlers run concurrently with main program
(in same process).

Process A Process A Process B

while (1)

handler () {

}

Time

optional

optional|

Another view of signal handlers as concurrent flows

Process A Process B

Signal delivered —» user code (main)

leurr

kernel code } context switch

user code (main)

kernel code } context switch

Signal received —»
user code (handler)

kernel code

Inext user code (main)

Pending and blocked signals

A signal is pending if sent but not yet received
<=1 pending signal per type per process

No Queue! Just a bit per signal type.
Signals of type S discarded while process has S signal pending.

A process can block the receipt of certain signals
Receipt delayed until the signal is unblocked

A pending signal is received at most once

Let's draw a picture...

Process Groups

Every process belongs to exactly one process group (default: parent's group)

pid=10
pgid=10

Background Background

process group 32 process group 40
pid=21 pid=22 getpgrp ()
Pgid=20 Pgid=20 Return process group of current process
Foreground setpgid()
process group 20 Change process group of a process

Sending signals from the keyboard

Shell: Ctrl-C sends SIGINT (Ctrl-Z sends SIGTSTP)
to every job in the foreground process group.
SIGINT — default action is to terminate each process
SIGTSTP — default action is to stop (suspend) each process

pid=20
Ppgid=20

pid=40
pgid=40

Background Background
@ process group 32 process group 40
pid=21 pid=22
Pgid=20 pgid=20
Foreground

process group 20

Signal demos
Ctrl-C

Ctrl-Z
kill

kill (pid, SIGINT);

A program that reacts to
externally generated events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
void handler (int sig) {
safe_printf("You think hitting ctrl-c will stop me?\n");
sleep(2);
safe_printf("Well...");
sleep (1) ; > ./external
printf ("OK\n") ; <ctrl-c>
exit(0) ; You think hitting ctrl-c will stop me?
} Well...OK
>
main() {
signal (SIGINT, handler); /* installs ctrl-c handler */
while (1) {
}
}
external.c

A program that reacts to internally generated events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler (int sig) {
safe printf ("BEEP\n") ;

if (++beeps < 5)
alarm(1) ;

else {
safe printf ("DING DING!'\n") ;
exit(0);

}

main() {
signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in
1 second */

while (1) {

}
}

internal.c

> ./internal
BEEP

BEEP

BEEP

BEEP

BEEP

DING DING!

>

[optionall

Signal summary

Signals provide process-level exception handling
Can generate from user programs
Can define effect by declaring signal handler

Some caveats

Very high overhead
>10,000 clock cycles
Only use for exceptional conditions
Not queued
Just one bit for each pending signal type
Many more complicated details we have not discussed.

Book goes into too much gory detail.

