WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Shells and Signals

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

shell: program that runs other programs

O & avh — -zsh — 80x24
avh ~ § pwd
/Users/avh

avh ~ $ echo "hello cs240"
hello cs240

avh ~ $ sleep 1

avh ~ $ sleep 1; echo "hello"

hello

avh ~ $ (sleep 4; echo "hello")&

[1] 29371

avh ~ $ hello

[1] + done (sleep 4; echo "hello";)
avh ~ $ (sleep 5; echo "hello")&

L1] 29577

avh ~ $ (sleep 10; echo "hello")&

[2] 29648

avh ~ $ hello

[1] - done (sleep 5; echo "hello";)
avh ~ $ hello

[2] + done (sleep 10; echo "hello";)

How many child threads are there at this point for this shell?

1 (foreground)

2 (1 foreground, 1 background)

3 (2 foreground, 1 background)

3 (1 foreground, 2 background)

None of the above

[Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Shells and the process hierarchy

....................
by
N
o
1)

nn
““
“
L
L
*
*

Login shell

S ||||||||||||||IIIII|
%
N
o
4y

“
] at®
.....................

Shell summary

Program that runs other programs on behalf of the user

Example: Mac (zsh)
Typically via the “command line interface” (CLI)

QO ® 7 avh — -zsh — 32x5

avh ~ § pwd
/Users/avh
avh ~ $ echo $SHELL
Example shells 4
sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
bash “Bourne-Again” Shell, widely used, default on most Unix/Linux systems
zsh Pronounced “z shell”, newer, now default on newer Mac systems
Windows Default on Windows systems Example: CSLinux (bash)
Termlnal . O avh — avh@cs:~ — ssh avh@cs.wellesley.edu —...
avh ~ $ ssh avh@Pcs.wellesley.edu
many OtherS... l[_:\s;;c@izgir]\ pvl;gl Mar 8 22:32:21 2024 from 73.17.106.151
/home/avh
[avh@cs ~] echo $SHELL
/bin/bash

[avh@cs ~] |

O ® 7 avh — avh@cs:~ -

Shell implementation
Shell high-level design:

1. Wait for input from the user. Print the “command prompt” to Indicate readiness.
2. Read in a command from the user, parse it (Pointers assignment)

. cd is built-in
3. Execute the command, either by:
1. If a built-in command, do it. Oi : :‘.Users--.
2. Otherwise, create a child process to run the command (£fork call) avh /Users § ||

Pseudocode:

while (true)
Print command prompt.
Read command line from user.

Parse command line. echo is not built-in

If command 1s built-in, do 1t. ® ® ® [avh — avh@cs:~ — -zsh — 41x5

Flse fork process to execute command. avh ~ $ echo "this runs in the child"
this runs in the child

in child: avh ~ $ ||
Exec requested command (never returns)
1n parent:

Walt for child to complete.

Terminal # shell

Terminal is the user interface to shell and other programs.
Graphical (GUI) vs. command-line (CLI)

Terminal

The shell itself does not control
pixels, it manipulates strings

To wait or not to wait?

A foreground job is a process for which the shell waits.™

S emacs fizz.txt # shell waits until emacs exits.

A background job is a process for which the shell does not wait*... yet.

S emacs boom.txt & # emacs runs in background.
[1] 9073 # shell saves background job and is..
S gdb ./umbrella # immediately ready for next command.

Foregound jobs get input from (and "own") the terminal. Background jobs do not.

Signals

Signal: small message notifying a process of event in system

like exceptions and interrupts

sent by kernel, sometimes at request of another process

ID is entire message

ID Name

2 SIGINT

9 SIGKILL
11 SIGSEGV
14 SIGALRM
15 SIGTERM
17 SIGCHLD
18 SIGCONT
19 SIGSTOP
20 SIGTSTP

Corresponding Event
Interrupt (Ctrl-C)

Kill process (immediately)
Segmentation violation
Timer signal

Kill process (politely)

Child stopped or terminated
Continue stopped process
Stop process (immediately)
Stop process (politely)

Default Action
Terminate
Terminate
Terminate & Dump
Terminate

Terminate

lgnore

Continue (Resume)
Stop (Suspend)
Stop (Suspend)

Can Override?
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes

Sending/receiving a signal

Kernel sends (delivers) a signal to a destination process
by updating state in the context of the destination process.

Reasons:
System event, e.g. segmentation fault (SIGSEGV)

Another process used kill system call:
explicitly request the kernel send a signal to the destination process

Destination process receives signal when kernel forces it to react.

Reactions:
Ignore the signal (do nothing)

Terminate the process (with optional core dump)

Catch the signal by executing a user-level function called signal handler

Like an impoverished Java exception handler

Signals handlers as concurrent flows optional

Signal handlers run concurrently with main program
(in same process).

Process A Process A Process B

while (1) handler () {

Time ‘

}

Another view of signal handlers as concurrent flows

Process A Process B

Signal delivered —» user code (main)

ICUFF

kernel code } context switch

user code (main)

kernel code } context switch

Signal received —p
user code (handler)

kernel code

| :
next user code (main)

S ——

Pending and blocked signals

A signal is pending if sent but not yet received
<=1 pending signal per type per process

No Queue! Just a bit per signal type.

Signals of type S discarded while process has S signal pending.

A process can block the receipt of certain signals

Receipt delayed until the signal is unblocked

A pending signal is received at most once

Let's draw a picture...

Process Groups

Every process belongs to exactly one process group (default: parent's group)

pid=10
pgid=10 Shell

oregrounc
job

Background\pid=32

pgid_32 d pld=40

Backgroun gid=40

job #2

Background Background
process group 32 process group 40
getpgrp ()

Return process group of current process

setpgid()
Change process group of a process

14

Sending signals from the keyboard

Shell: Ctrl-C sends SIGINT (Ctrl-Z sends SIGTSTP)
to every job in the foreground process group.

SIGINT — default action is to terminate each process

SIGTSTP — default action is to stop (suspend) each process

pid=10
pgid=10 Shell

pid=32 pid=40
pgid=32 pgid=40
Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20

Foreground
process group 20

Signal demos

Ctrl-C
Ctrl-Z
kill

kill (pid,

Sl

INT) ;

16

A program that reacts to
externally generated events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
safe printf("You think hitting ctrl-c will stop me?\n");

sleep(2) ;

safe printf("Well...");

sleep (1) ; > . /external

printf ("OK\n") ; <ctrl-c>

exit (0) ; You think hitting ctrl-c will stop me?
} Well...OK

>

main () {

signal (SIGINT, handler); /* installs ctrl-c handler */

while (1) {

}

}

external.c

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler (int sig) {
safe printf ("BEEP\n") ;

i1f (++beeps < 5)
alarm(1l) ;
else {
safe printf ("DING DING!\n") ;
exit (0) ;
}
}

A program that reacts to internally generated events

main () {
signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in

1l second */
while (1) {

}
}

internal.c

> ./internal
BEEP

BEEP

BEEP

BEEP

BEEP

DING DING!

>

optional

Signal summary

Signals provide process-level exception handling

Can generate from user programs

Can define effect by declaring signal handler

Some caveats

Very high overhead
>10,000 clock cycles

Only use for exceptional conditions

Not queued

Just one bit for each pending signal type

Many more complicated details we have not discussed.

Book goes into too much gory detail.

