CS 240
Foundations of Computer Systems

Virtual Memory

Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?
Address translation with pages
Extra benefits: sharing and protection

Memory as a contiguous array of bytes is a lie! Why?

https://cs.wellesley.edu/~cs240/

WELLESLEY

Problems with physical addressing

Main memory

0:

1:

Physical address 2:

cPU ey L2
4 5:

6:

7:

8:

Data

Problem 1: memory management

Main memory

Process 1

stack
Process 2 X heap What goes
Process 3 where?
code
globals
Process n

Also:
Context switches must swap out entire memory contents.
Isn't that expensive?

Problem 2: capacity

64-bit addresses can address Physical main memory offers
several exabytes ~a few dozen gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)
?

(To scale with 64-bit address
space, you can't see it!)

Chip

MacBook Pro

Apple M2 Max

Memory

32 GB

Serial number
macOS

virtual address space per process,
with many processes...

NéP2HP43JC
Ventura 13.5

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

What does this code print? Why/how?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

int s;

int x = 1;

int *p;

int child_pid = fork();

p = &x;

if (child_pid == 0) {
*p = 2;

} else {
*p = 3;

}

printf("Address 0x%lx holds %d\n", (long)p,

*p)i

Which is a possible output of this program?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

int s;

int x = 1;

int *p;

int child pid = fork();

P = &x;

if (child pid == 0) {
*p = 2;

} else {
*p = 3;

printf("Address Ox%lx holds %d\n", (long)p, *p);

Start the presentation to see live content. For screen

Addr 0x10 holds 2; Addr 0x10 holds 2

Addr 0x10 holds 3; Addr 0x10 holds 3

Addr 0x10 holds 3; Addr 0x10 holds 2

Addr 0x10 holds 3; Addr 0x20 holds 3

Addr 0x10 holds 3; Addr 0x20 holds 2

None of the above

, share the entire screen. Get help at poll

What does this code print? Why/how?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

int s;

int x = 1;

int *p;

int child_pid = fork(); $./fork.o

p = &x;

if (child_pid == 0) {
*p = 2;

} else {
*p = 3;

}

printf("Address 0x%1lx holds %d\n", (long)p,

Address 0x16B7E2C04
Address 0x16B7E2C04

*p)i

holds 3
holds 2

Problem 3: protection

Process i

Process j

Problem 4: sharing
Process i

Process j

Physical main memory

Physical main memory

Solution: Virtual Memory (address indirection)

S data
Process 1 5
ki
K] virtual .
'E addresses Physical memory
: e Single physical address space
T mapping physical managed by OS/hardware.
g addresses
Process n §
] virtual
';5 L__| addresses data

Indirection wgn

(it's everywhere!)

Direct naming non
ll2|l ju
What X ////
currently 7
"X"\n;apsto ,//
Indirect naming %;IZ[
llxll
"X"/

What if we move Thing?

N o s W N RO

Tangent: indirection everywhere

« Pointers

« Constants "X

» Procedural abstraction \‘

« Domain Name Service (DNS) \\

» Dynamic Host Configuration Protocol (DHCP) \\

« Phone numbers)

« 911

» Call centers

+ Snail mail forwarding

* .. “Any problem in computer science can be solved by adding another level of indirection.”

—David Wheeler, inventor of the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes." 11

Virtual addressing and address translation

Memory Management Unit
translates virtual address to physical address
Main memory

CPU Chip

Virtual address

Physical address
(PA)

Data

Page-based mapping

fixed-size, aligned pages

Virtual page size = power of two
Address Space
0 -
Virtual Physical
P"’Oge Address Space
Virtual 0 PT,VSica
Page : gge
"
Virtual Physica
Pace > | Page
= 1
Virtual
Page Map virtual pages see
3 .
onto physical pages. Physica
(XX | Page
- 20-1
Virtual m-1
Page
-1 | 2v-1 Some virtual pages do not fit!

Where are they stored?

Cannot fit all virtual pages! Where are the rest stored?

Virtual Memory virtual address space
Address Space usually much larger than
Virtual physical address space

Page
0
Virtual
Page
I
Virtual
Page
Z
Virtual
Page
3

1. On disk if used

tu,
-1 “ ‘2. Nowhere if not (yet?) used

Virtual memory: cache for disk?

Not drawn to scale!

SRAM DRAM
(N (\
~4 MB ~8 GB ~500 GB
L1
I-cache
L2 i .
Main
32K8 unified Disk
cache Memory
CP] e L1
w € D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1B/30 cycles i . .
Latency: 3 cycles 14 cycles 100 cycles millions solid-state "flash
or
A A spinning
magnetic platter.
Cache miss penalty
(latency): 33x

Address translation

Main memory
0:
1:
Physical address 2:

(VA) (PA)
CPU 2100 MMU i

CPU Chip

Virtual address

NI REW

Data

Example system

Memory miss penalty
(latency): 10,000x

Page table

Physical pages

array of page table entries (PTEs) (Physical memory)

mapping virtual page to where it is stored VP 1 PPO
Physical Page Number
Valid or disk address VP 2
PTEO | O null
1 P VP 7
1
— VP4 | PP3
0 .
1 o—— |
0 null N
0 e s
PTE7 [1 o« . o Swap space

page table (O
7

Memory resident,
managed by HW (MMU), OS

Virtual memory benefits:
Simple address space allocation

Process needs private contiguous address space.

Virtual Address Spaces Physical Address Space (DRAM)
0 0
Process 1:
VP 1
w2 | [z
nal]
PP 6
Process 2: (L PP8
VR PP9
VP 2
vl wil—]

Virtual memory benefits:
Protection:

All accesses go through translation.
Impossible to access physical memory not mapped in virtual address space.

Sharing:

Map virtual pages in separate address spaces to same physical page (Pr6).

Virtual Address Spaces Physical Address Space (DRAM)

Process 1: 0

VP 1

w2 | > 2

vl]
(e.g., exec ly
EAIS library code: libc)
. 0

Process 2: PP 8

VP 1

VP2

Virtual memory benefits:
Memory permissions

MMU checks on every access.
Exception if not allowed.

/
permission bits Physical
Process 1: Valid READ WRITE EXEC Physical Page Num Address Space
VPO: | Yes No No Yes PP6
VP1: | Yes No No Yes PP 4
VP2: | Yes Yes Yes No PP2 2d
Page Table PP4
N
permission bits PP6
Process 2: Valid READ WRITE EXEC Physical Page Num P8
VPO: [Yes | Yes [Yes | No | PP9 PO
VPL:| Yes | No | No | Yes | PP6
VP2: | Yes | Yes | No | No | PP 11 —>| PP1l
Page Table

Summary: virtual memory

Programmer’s view of virtual memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System view of virtual memory

Uses memory efficiently (due to locality) by caching virtual
memory pages
Simplifies memory management and sharing
Simplifies protection -- easy to interpose and check permissions
More goodies:

» Memory-mapped files

» Cheap fork () with copy-on-write pages (COW)

Virtual Physical
VP 1
VP2 PP 2
PP 6
PP
i PP9

VP2

