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Virtual Memory 
Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?

Address translation with pages


Extra benefits: sharing and protection


Memory as a contiguous array of bytes is a lie!  Why?
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Problems with physical addressing
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Problem 1: memory management
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Also:

Context switches must swap out entire memory contents.

Isn't that expensive?

Problem 2: capacity
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64-bit addresses can address

several exabytes


(18,446,744,073,709,551,616 bytes)

1 virtual address space per process, 
with many processes…

?

Physical main memory offers

~a few dozen gigabytes


(e.g. 8,589,934,592 bytes)

(To scale with 64-bit address 
space, you can't see it!)

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/


What does this code print? Why/how?
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#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
  int s;
  int x = 1;
  int *p;
  int child_pid = fork();
  p = &x;
  if (child_pid == 0) {
    *p = 2;
  } else {
    *p = 3;
  }
  printf("Address Ox%lx holds %d\n", (long)p, *p);
}
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What does this code print? Why/how?
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#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
  int s;
  int x = 1;
  int *p;
  int child_pid = fork();
  p = &x;
  if (child_pid == 0) {
    *p = 2;
  } else {
    *p = 3;
  }
  printf("Address Ox%lx holds %d\n", (long)p, *p);
}

$ ./fork.o
Address 0x16B7E2C04 holds 3
Address 0x16B7E2C04 holds 2

Problem 3: protection
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Solution: Virtual Memory (address indirection)

9

Physical memory

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

Process 1

Process n

virtual-to-physical


mapping

virtual 
addresses

physical 
addresses

virtual 
addresses

Single physical address space 
managed by OS/hardware.

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

data

data

Indirection

Direct naming


Indirect naming
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What if we move Thing?
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Tangent: indirection everywhere
• Pointers

• Constants

• Procedural abstraction

• Domain Name Service (DNS)

• Dynamic Host Configuration Protocol (DHCP)

• Phone numbers

• 911

• Call centers

• Snail mail forwarding

• …
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“Any problem in computer science can be solved by adding another level of indirection.” 
–David Wheeler, inventor of the subroutine, or Butler Lampson


Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes." 

y
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Virtual addressing and address translation
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Page-based mapping
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fixed-size, aligned pages

page size = power of two

Map virtual pages 
onto physical pages.

Some virtual pages do not fit!  

Where are they stored?

Cannot fit all virtual pages!  Where are the rest stored?
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Virtual Memory

Virtual memory: cache for disk?
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Not drawn to scale! Address translation
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Page table
array of page table entries (PTEs) 
mapping virtual page to where it is stored
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Virtual memory benefits: 
Simple address space allocation

Process needs private contiguous address space.
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Virtual memory benefits:
Protection:


All accesses go through translation.

Impossible to access physical memory not mapped in virtual address space. 


Sharing:

Map virtual pages in separate address spaces to same physical page (PP 6).
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Virtual memory benefits: 
Memory permissions
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Summary: virtual memory
Programmer’s view of virtual memory


System view of virtual memory
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Each process has its own private linear address space

Cannot be corrupted by other processes


Uses memory efficiently (due to locality) by caching virtual 
memory pages

Simplifies memory management and sharing

Simplifies protection -- easy to interpose and check permissions 
More goodies:

• Memory-mapped files

• Cheap fork() with copy-on-write pages (COW)
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