
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Virtual Memory 
Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?

Address translation with pages


Extra benefits: sharing and protection


Memory as a contiguous array of bytes is a lie!  Why?

1

Problems with physical addressing

2

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data

8: ...

4

Problem 1: memory management

3

Main memory

What goes 
where?

stack

heap

code


globals

…

Process 1

Process 2

Process 3

…

Process n

×

Also:

Context switches must swap out entire memory contents.

Isn't that expensive?

Problem 2: capacity

4

64-bit addresses can address

several exabytes


(18,446,744,073,709,551,616 bytes)

1 virtual address space per process, 
with many processes…

?

Physical main memory offers

~a few dozen gigabytes


(e.g. 8,589,934,592 bytes)

(To scale with 64-bit address 
space, you can't see it!)

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/


What does this code print? Why/how?

5

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
  int s;
  int x = 1;
  int *p;
  int child_pid = fork();
  p = &x;
  if (child_pid == 0) {
    *p = 2;
  } else {
    *p = 3;
  }
  printf("Address Ox%lx holds %d\n", (long)p, *p);
}

6

What does this code print? Why/how?

7

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
  int s;
  int x = 1;
  int *p;
  int child_pid = fork();
  p = &x;
  if (child_pid == 0) {
    *p = 2;
  } else {
    *p = 3;
  }
  printf("Address Ox%lx holds %d\n", (long)p, *p);
}

$ ./fork.o
Address 0x16B7E2C04 holds 3
Address 0x16B7E2C04 holds 2

Problem 3: protection

8

Physical main memory

Process i

Process j

Problem 4: sharing
Physical main memory

Process i

Process j



Solution: Virtual Memory (address indirection)

9

Physical memory

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

Process 1

Process n

virtual-to-physical


mapping

virtual 
addresses

physical 
addresses

virtual 
addresses

Single physical address space 
managed by OS/hardware.

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

data

data

Indirection

Direct naming


Indirect naming

10

"2"

"x" 2

What if we move Thing?

Thing

7

0
1

2

3

6

5

4
What X 
currently 
maps to

"2"

"2"

"x"
"x"

"x"

(it's everywhere!)

Tangent: indirection everywhere
• Pointers

• Constants

• Procedural abstraction

• Domain Name Service (DNS)

• Dynamic Host Configuration Protocol (DHCP)

• Phone numbers

• 911

• Call centers

• Snail mail forwarding

• …

11

“Any problem in computer science can be solved by adding another level of indirection.” 
–David Wheeler, inventor of the subroutine, or Butler Lampson


Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes." 

y

"x"

Virtual addressing and address translation

12

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data

8: ...

CPU
Virtual address


(VA)

CPU Chip

44100

Memory Management Unit

translates virtual address to physical address



Page-based mapping

13

Physical

Address Space

Physica
l Page


0
Physica
l Page


1

…
Physica
l Page

2p - 1

0

2m - 1

Virtual

Address Space

Virtual

Page


0
Virtual

Page


1

…
Virtual

Page

2v - 1

0

2n - 1

Virtual

Page


2
Virtual

Page


3

fixed-size, aligned pages

page size = power of two

Map virtual pages 
onto physical pages.

Some virtual pages do not fit!  

Where are they stored?

Cannot fit all virtual pages!  Where are the rest stored?

14

Physical Memory

Address Space

Physica
l Page


0
Physica
l Page


1

…
Physica
l Page

2p - 1

0

2m - 1

Virtual Memory

Address Space

Virtual

Page


0
Virtual

Page


1

…
Virtual

Page

2v - 1

0

2n - 1

Virtual

Page


2
Virtual

Page


3 1. On disk if used

2. Nowhere if not (yet?) used

virtual address space

usually much larger than

physical address space

Virtual Memory

Virtual memory: cache for disk?

15

DiskMain 
Memory

L2 
unified 
cache

L1 

I-cache

L1 

D-cache

CP
U Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:
Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Example system

Cache miss penalty

(latency): 33x

Memory miss penalty

(latency): 10,000x

SRAM DRAM

solid-state "flash"

or


spinning

magnetic platter.

Not drawn to scale! Address translation

16

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data

8: ...

CPU
Virtual address


(VA)

CPU Chip

44100



Page table
array of page table entries (PTEs) 
mapping virtual page to where it is stored

17

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0

VP 2

VP 1

PP 3

null

null

page table

0
1

0

0
1
1
0
1

Valid
Physical Page Number


or disk address
PTE 0

PTE 7

Memory resident,

managed by HW (MMU), OS

VP 3

VP 6

Virtual memory benefits: 
Simple address space allocation

Process needs private contiguous address space.

18

0

N-1

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

PP 9

Process 1:
Physical Address Space (DRAM)

Process 2:

Virtual Address Spaces 

Virtual memory benefits:
Protection:


All accesses go through translation.

Impossible to access physical memory not mapped in virtual address space. 


Sharing:

Map virtual pages in separate address spaces to same physical page (PP 6).

19

Process 1:
Physical Address Space (DRAM)

0

N-1
(e.g., execute-only

library code: libc)

Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Virtual Address Spaces 

Virtual memory benefits: 
Memory permissions

20

Process 1: Physical Page NumWRITE EXEC
PP 6NoNo
PP 4No Yes
PP 2Yes

Process 2:

No

READ
Yes

No
Yes

WRITE EXEC
PP 9Yes No
PP 6NoNo

PP 11Yes No

READ

Yes
No

VP 0:
VP 1:
VP 2:

VP 0:
VP 1:
VP 2:

Physical 

Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Yes
Yes
Yes

Yes
Yes
Yes

Valid

Valid Physical Page Num

permission bits

Page Table

Page Table

permission bits

MMU checks on every access.

Exception if not allowed.

Yes



Summary: virtual memory
Programmer’s view of virtual memory


System view of virtual memory

21

Each process has its own private linear address space

Cannot be corrupted by other processes


Uses memory efficiently (due to locality) by caching virtual 
memory pages

Simplifies memory management and sharing

Simplifies protection -- easy to interpose and check permissions 
More goodies:

• Memory-mapped files

• Cheap fork() with copy-on-write pages (COW)


VP 1
VP 2
...

VP 1
VP 2
...

PP 2

PP 6

PP 8

...
PP 9

PhysicalVirtual


