CS 240
Foundations of Computer Systems

x86 Control Flow

(Part A, Part B)
Condition codes, comparisons, and tests
[Un]Conditional jumps and conditional moves
Translating if-else, loops, and switch statements

https://cs.wellesley.edu/~cs240/

‘WELLESLEY

Motivation

Recall: instruction memory is a flat list (with the program counter as index)!

Address |Contents
Ox... <instruction>
Ox... <instruction>
Ox... <instruction>
Instruction pointer 0X... <instruction>
(a.k-a. program counter) 0X... <instruction>
register holds address of next instruction to execute

We don’t get to keep

if/while/for/break/continue

Conditionals and Control Flow

To implement familiar C constructs

1. Compare and test: conditions

cmpg b,a | computes a - b, sets flags, discards result

+ if else Condition codes (a.k.a. flags)

- while 1-bit registers hold flags set by last ALU operation

+ do while m Zero Flag result==0

- for

. break E Sign Flag result<0

+ continue Carry Flag carry-out/unsigned overflow

Similar to BEQ, JMP in HW ISA (but more options)

Two key pieces

1.
2.

Comparisons and tests: check conditions
Transfer control: choose next instruction

Processor Control-Flow State

Overflow Flag

Instruction pointer
SED (a.k.a. program counter)

register holds address of next instruction to execute

two's complement overflow

Which flags indicate that a < b ? (signed? unsigned?)

testqg b,a|[computes a & b, sets flags, discards result

Common pattern:

testqg %rax, %rax

What do ZF and SF indicate?

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

w

If we calculate "testq %rax, %rax" then check the "ZF" flag, what does the result indicate? o

If ZF = 1, then %rax is negative, otherwise... (A)

cmpg b,a computes a - b, sets flags, discards result If ZF = 1, then %rax is positive, otherwise ... (B)

Which flags indicate that a < b ? (signed? unsigned?)

If ZF = 1, then %rax is zero, otherwise it is ... (C)
testq b,acomputes a & b, sets flags, discards result

Common pattern:

testq trax, frax If ZF = 1, then %rax is nonzero, otherwise ... (D)

None of the above (E)

.. Start the presentation to see live content. For screen sh: ft hare th reen. Get help at .-

s

If we calculate "testq %rax, %rax" then check the "ZF" flag, what does the result indicate? o

(A) If ZF = 1, then %rax is negative, otherwise it is positive.

0%
(B) If ZF = 1, then %rax is positive, otherwise it is negative.
0%
cmpg b,a computes a - b, sets flags, discards result
(C) If ZF = 1, then %rax is zero, otherwise it is nonzero.
Which flags indicate thata < b ? (signed? unsigned?) 0%
(D) If ZF = 1, then %rax is nonzero, otherwise it is zero.
0%
testq b,acomputes a & b, sets flags, discards result
Common pattern: (E) None of the above
pattern: 0%

testq frax, srax

u Start the presentation to see live content. For screen

reen. Get help at poll ..

If we calculate "testq %rax, %rax" then check the "ZF" flag, what does the resultindicate? o

(A) If ZF = 1, then %rax is negative, otherwise it is positive.

0%
(B) If ZF = 1, then %rax is positive, otherwise it is negative.
0%
cmpg b,a computes a - b, sets flags, discards result
(C) If ZF = 1, then %rax is zero, otherwise it is nonzero.
Which flags indicate thata < b ? (signed? unsigned?) 0%
(D) If ZF = 1, then %rax is nonzero, otherwise it is zero.
0%
testq b,acomputes a & b, sets flags, discards result
Common pattern: (E) None of the above
) 0%

testq trax, trax

.. Start th ion to see li

. For screen share software, share the entire screen. Get help at pollev.com/app ..

2. Transfer control: choose next instruction

Different jump/branch instructions to different part of code by setting $rip.

Like BEQ, JMP

U . \j ‘Condition ‘Description
nconditional — _
jump - [jme 1 &Encondltlonal
je ZF Equal / Zero
Like BEQ, jne ~ZF Not Equal / Not Zero
but for more than js SF Negative
just “equal” jns ~SF Nonnegative
jg ~(SF"OF) &~ZF Greater (Signed)
jge ~ (SF"OF) Greater or Equal (Signed)
jl (SF"OF) Less (Signed)
jle (SF"OF) | ZF Less or Equal (Signed)
ja ~CF&~ZF /Above (unsigned)
jb CF Below (unsigned)

Jump for control flow

Jump immediately follows comparison/test.
Together, they make a decision:
"if rcx == %rax thenjumpto label.”

\ cmpq %rax, 3rcx

je label

label: addg %rdx, %rax

Label /

Name for address of
following item.

Interpreting Conditional Jumps

It is easier to read conditional jumps in x86-64 by comparing b
against a instead of looking at condition codes.

cmp b,a test b,a

je “Equal” a == b asb ==
jne “Not equal” a !=b asb =
is “Sign” (negative) a-b < 0 a&b <

jns (non-negative) a-b >= a&b >=

ig “Greater” a>b a&b >

jge “Greater or equal” a >= b a&b
j1 “Less" a<b
jle "Less or equal” a<=b
ja “Above” (unsigned >) a>b
jb “Below” (unsigned <) a<b

Conditional branch example

" absdiff:
long absdiff(long x,long y) { cmpg %rsi, srdi
long result; jle .L7
if (x > y) { subg %rsi, %rdi
result = x-y; movq $rdi, %rax
} else .L8:
/,/;' |retq
Labels —
return result; Namefora(?ldre-ssof subqg %rd%, srsi
} following item. movq %rsi, %rax
jmp .L8

How did the compiler create this?

Introduced by Fran Allen, et al.
Won the 2006 Turing Award
for her work on compilers.

Control-Flow Graph

Code flowchart/directed graph.

long absdiff(long x, long y){
long result;

Nodes = Basic Blocks:
Straight-line code always

. if (x > y) {
executed togethf—:'rln order. result = x-y;

: } else

. | long result;
f if (x > y)_ else

elsel| « }

return result;

" Edges = Control Flow:
____---- Which basic block executes
Y A next (under what condition).

return result;

result = y-x;

Control-Flow Graph

How do we represent this non-flat structure in a single instruction memory?

long result;
if (x > y) else

return result;

Choose a linear order of basic blocks.

long result;
if (!(x > y))
then else
A 4
result = x-y;

return result;

result = y-x;

There are many different
linear orders!

In CS240, we’ll accept
any one that “works”

The compiler tries to
choose the “best” one

Translate basic blocks with jumps + labels

long result; ?qu zllfsi, grdi
if ((x > y)) Jie se

subg grsi, %rdi
movq %rdi, %rax

result = x-y;

A 4 retq
return result;

subg grdi, srsi
movqg %rsi, %rax

result = y-x; jmp End

Insert label if incoming
edge from a block other
than the block above

Execute absdiff

Registers
cmpq grsi, %rdi
jle Else
subg %rsi, %rdi
movqg ¢rdi, %rax

retq

subg %rdi, %rsi
movqg %rsi, %rax
jmp End

Execute absdiff

Execute absdiff

Registers Registers

jle Else jle Else

subq $rsi, %rdi subg grsi, %rdi

retq retq

subqg grdi, %rsi subg grdi, %rsi

movq $rsi, %rax movqg $rsi, %rax

jmp End jmp End

Execute absdiff m Execute absdiff m

Registers Registers

jle Else jle Else
. .

subg %rsi, %rdi subg %rsi, %rdi

retq retqg

subqg grdi, %rsi subq %rdi, %rsi

movqg %rsi, %rax movq $rsi, %rax

jmp End

jmp End

Execute absdiff

Compile if-else

Registers
: . long wacky(long x, long y){ wacky:
jle Else {
subg grsi, %rdi u i
movq $rdi, %rax '
retq
}
subg grdi, %rsi Recall:
movq 3rsi, $rax X is available in $rdi
jmp End y is available in rsi
Calculate result in $rax for return
Instructions to use (one or more of)
movq, addgq, cmpq, jg or jle,
Hint: be careful not to overwrite x, y!
Compile if-else Compile if-else (solution #1)
long wacky(long x, long y){ wacky : Incomplete first attempt
long wacky(long x, long y)({ wacky:

{

result = x;

Recall:
x is available in $rdi
y is available in $rsi
Calculate result in $rax for return

Instructions to use (one or more of)
movqg, addqg, cmpg, jg or jle,

Hint: be careful not to overwrite x, y!

leaq

Then:

Else:
Oops, we overwrote y!

Now can’t compute y + 2

Group task: fix/complete this code by
filling in x86 for each block

{

result = x;

Recall:
x is available in $rdi
y is available in $rsi
Calculate result in $rax for return

movqg %rdi, %rax

Else:
addg $2, %rsi
movg %rsi, %rax
jmp End

Compile if-else (solution #2) - 1eaq Encoding jumps: PC-relative addressing

long wacky(long x, long y){ ||wacky: Unlike HW ISA, x86-64 jumps can use relative offsets (distance, not address)
{
! result = x; 0x100 cmpg %rax, 3%rbx 0x1000
movq $rdi, $rax 0x102 je 0x70 0x1002
0x104 l 0x1004
) ! 0x174 addg %rax, %rbx 0x1074
Reca.ll. . . . Else:
x is available in $rdi leaq 2(%rsi), %rax
y is available in $rsi jmp End
Calculate result in $rax for return PC-relative offsets support relocatable code.
Absolute branches do not (or it's hard).

WELLESLEY
CS 240

Fill out the x86 partner form (even if solo) Foundations of Computer Systems

T COULDRESTRUCTURE | | EH, SCREW GQOD PRACTICE.

Jeupmman| oy x86 Control Flow

OR USE ONE LITTILE. goto main-sub3;
‘GoTD' INSTEAD.

Q% Q%»canmﬁ

(Part A, Part B)
Condition codes, comparisons, and tests

[Un]Conditional jumps and conditional moves
Translating if-else, loops, and switch statements

https://forms.gle/RnB69moBmeNbNB8F7

https://cs.wellesley.edu/~cs240/

https://forms.gle/RnB69moBmeNbNB8F7
https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

do while loop

long result = 1;

do while loop

long result = 1;

fact_do:

movqg $1,%rax

long fact_do(long x) { Vy T
result = result*x; VY L11l:
@ ¢ X =x - 1; result = result*x; imulg %rdi,%rax
result = result * x; x=x-1; decq %rdi
x=x - 1;
} (x > 1) ? .Yes
return result; 3 .
, INo (x > 1) ¢ Nes cmpg $1,%rdi
N°I jg .L11
return result; g -
return result; | retq
Why put the loop condition at the end?
29 30
. .
while loop while loop
long fact_while(long x){ long fact_while(long x){
[0
. long result = 1;
result = result * x; result = result * x;
x=x - 1; A 4 x=x-1;
} result = result+*x; } Full x86-64:
return result; return result;
} x=x-1; } fact while:
. - movg $1, %rax
long result = 1; CORresu LT jmp .L34
?
. (x > &3 & Ves n Y .L35:
(x >1) 2 I iefuxt —l?esu txox; imulg $rdi, %rax
gYes ! decq %rdi
|return result;
result = result*x; LL34:
X =x - 1; (x >1) 2 cmpg $1, %rdi
Yes R
WT jg .L35

» return result;

This order is used by GCC for x86-64. Why?

v

return result;

retqg

for loop translation

for loop: square-and-multiply

/* Compute x raised to nonnegative power p */

for (Initialize; Test; Update) { for (result = 1; p != 0; p = p>>1) { int power(int x, unsigned int p) {
Body if (p & 0x1) { int result;
} result = result * x; for (result = 1; p != 0; p = p>>1) {
for loops are syntactic)}(R if (p & 0x1) {
sugar for while loops: [, -~ } ! result = result * x;
;
we can just translate | . (Test) { }){ o s Xm * xn = Xm+n
£ ;
towhile . } 0 .0 1 0 1 1=11
Update; result = 1; N return result; 12731 % | % 116 * y8 % 14 % y2 * y1 = y11
: if (p & 0x1) { | 1=x0 x=x1
i P X .
result = result*x; Algorlthm
Initialize ,){ R Exploit bit representation: p = py + 2p; + 22p, + ... 2-1p, | Example
p=p > 1i Gives:x? =20 212 (2222 ... (..((z412) 2)..) 2 o sgrY
z=1 whenp;=0 =31% 327 (322
n-1 times
(p !=10) ? Yes zi=x whenp;=1
No . .
Complexity O(log p) = O(sizeof(p)) "
for loop: power iterations optional (Aside) Conditional Move
/* Compute x raised to nonnegative power p */ long absdiff(long x,long y) {
int power(int x, unsigned int p) {
int result; cmov src, dest {
for (result = 1; p != 0; p = p>>1) { - result = x - y;
if (p & 0x1) { if (Test) Dest < Src }
result = result * x;
}}{ = x*x: long absdiff(long x, long y) {
} return x>y ? x-y y-X; N
return result; }
} iteration| result X P absdiff:
0 1 3| 11 = 1011, movg %rdi, Srax
1 3 9 S 101 subg >rsi, %rax
- 2 movq s, rdx Why? Branch prediction in pipelined/0o0 processors.
2 27 81 2 = 10, q rdi, %$rdx
rsi, rd
3 27 6561 1 = 1, rdx rax
4 177147| 430467 0, ret

(Aside) Bad uses of conditional move

Expensive Computations

switch statement

long w = 1;
switch(x) {

long switch_eg (long x, long y, long z) {

val = Test(x) ? Hardl(x) : Hard2(x); case lj
W=y *oz;
break; Fall through cases
case 2: “",,,,,,,,—fr
. . W=y -z
Risky Computations case 3:) Lots to manage:
W o+= z; Multiple case labels .
break; e‘/’/’,,—f” use a jump table.
val = 0;
case 5:
case 6:
w == 2; B
raeeir / Missing cases use default
Computations with side effects default:
w = 2;
}
val = 0 2 xX++ : X—-—; return w;
}
37 38
switch jump table structure switch jump table assembly declaration
C code: Memory read-only data

switch(x) {

case 1l: <some code>
break;

case 2: <some code>

case 3: <some code>
break;

case 5:

case 6: <some code>

break;
default: <some code>

}

Translation sketch:

if (0 <= x && X <= 6)
addr = jumptable[x];
goto addr;

else
goto default;

Code
Blocks
6
5
4
3 .) .
2 Each row in the jump table is the
1 address of the code for that case
Jump °

Table

(not instructions)

.section .rodata 8-byte
.align 8 alignment

.L4:
.quad L8 #x==0
.quad L3 #x==1
.quad L5 # x == 2
.quad L9 # x == 3
.quad L8 # x 4
.quad L7 # x 5
.quad L7 # x == 6

\

“quad” = q suffix = 8-byte value

switch(x) {

ase 1: //
////C w =y * z;
break;
| —case 2: //
w =Yy - 2;
[—case 3: //
w += z;
break;
\\\\case 5:
case 6: //
w -= 2z;
break;
efault: //
w = 2;
}

odnd)

.L5

.L9

L7

.L8

switch case dispatch

long w = 1;
switch(x) {

}

return w;

}

long switch_eg(long x, long y, long z) {

Jump if above (unsigned, b}lt...)

switch_eg:

movl $1, \2eax
cmpg $6, %rdi

ja .L8

jmp * L4 (,%rdi,8)

indirect jump

Jump table
.section .rodata
.align 8
.L4:
.quad L8 # x ==0
.quad L3 # 1
.quad L5 # 2
.quad L8 # x == 4
.quad L7 # 5
.quad L7 # 6

switch cases

switch(x) {

case 1: //
w =y * z;
break;

case 2: !/
w=y - z;

case 5: //

case 6: //
w -= z;
break;

default: //
w = 2;

}

return w;

L7
L7

.L8

Reg.
$rdi
grsi
N . o $rdx
.L3: movqg $rsi, %rax
R ¥rax
imulqg grdx, %rax
retq <«——————— “inlined"return
.L5: movqg $rsi, %$rax
subg %rdx, %rax

<«——— Fall-through

retq

.L7:
subg %rdx, %rax
retq

.L8:

movl $2, %eax
retq

Aside: mov1 is used because 2 is a small positive value that fits
in 32 bits. High order bits of %rax get set to zero automatically.
It takes fewer bytes to encode a literal mov1 vs a movg.

L N KX

switch machine code

Disassembled Object Code

Assembly Code |switch_eg:
cmpq , %rdi
ja .L8
jmp *.L4(,%rdi,8)

00000000004004f6 <switch_eg>:

4004fd: 77 2b
4004ff: £f 24 £d d0 05 40 00

ja 40052a <switch_eg+0x34>
jmpg *0x4005d0(,%rdi,8) ¢—mA1

Inspect jump table contents using GDB.

Examine contents as 7 addresses

Address of code for case 0

(gdb) x/7a 0x4005d0 /

0x4005d0: 0x40052a <switch_eg+52>
0x4005e0: 0x40050e <switch_eg+24>
0x4005£0: 0x40052a <switch_eg+52>
0x400600:

Address of code for case 1

0x400506 <switch_eg+16>
0x400518 <switch_eg+34>
0x400521 <switch_eg+43>

0x400521 <switch_eg+43>¢—— Address of code for case 6

I

When looking as disassembled
code: an indirect jump like this

| is asignit’s a jump table
encoding a switch

Would you implement this with a jump table?

switch(x) {
case 0:

case 10:
case 52000:

default:

<some code>
break;
<some code>
break;
<some code>
break;
<some code>
break;

Would it be a good idea to implement this switch statement with a jump table?

Yes

Maybe

Start the presentation to see live content. For screen sh: ft hare the entire screen. Get help at

Would it be a good idea to implement this switch statement with a jump table?

switch(x) {
case 0:

case 10:
case 52000:

default:

<some code>
break;
<some code>
break;
<some code>
break;
<some code>
break;

Start the presentation to see live content. For screen

Yes

0%
No

0%
Maybe

0%

reen. Get help at poll

Would it be a good idea to implement this switch statement with a jump table?

Yes
0%
switch(x) { No
case 0: <some code> 0%
break;
case 10: <some code> Maybe
break; o
case 52000: <some code>
break;
default: <some code>
break;
}
Start the ion to see i . For screen sh: fty hare the il . Get help at poll

