WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

x86 Control Flow

(Part A, Part B)
Condition codes, comparisons, and tests
[Un]Conditional jumps and conditional moves
Translating if-else, loops, and switch statements

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Motivation

Recall: instruction memory is a flat list (with the program counter as index)!

Address |Contents
0x... <instruction>
0x... <instruction>
0x... <Instruction>
Instruction pointer 0x... <instruction>
(a.k.a. program counter) 0x... <instruction>
register holds address of next instruction to execute

We don’t get to keep

Conditionals and Control Flow

To implement familiar C constructs
Processor Control-Flow State

- 1f else Condition codes (a.k.a. flags)

« while 1-bit registers hold flags set by last ALU operation
* do while Zero Flag result==0
- for

SF Sign Fla result< O
 break . SR

« continue Carry Flag carry-out/unsigned overflow

Overflow Flag two's complement overflow

Similar to BEQ, JMP in HW ISA (but more options)

. Instruction pOinter
Two key pieces o b (a.k.a. program counter)
1. Comparisons and tests: check conditions register holds address of next instruction to execute

2. Transfer control: choose next instruction

1. Compare and test: conditions

computes a - b, sets flags, discards result

Which flags indicate that a < b ? (signed? unsigned?)

testg b,a|computes a & b, sets flags, discards result

Common pattern:

testq 3rax, srax

What do ZF and SF indicate?

If we calculate "testqg %rax, %rax" then check the "ZF" flag, what does the result indicate? 7o

If ZF = 1, then %rax is negative, otherwise... (A)

cmpg b,a computes a - b, setsflags, discards result If ZF = 1, then %rax is positive, otherwise ... (B)

Which flags indicate that a < b ? (signed? unsigned?)

If ZF =1, then %rax Is zero, otherwise it is ... (C)
testg b,acomputes a & b, setsflags, discards result

Common pattern:

3 3 ' [
testqg %rax, %rax If ZF = 1, then %rax is nonzero, otherwise ... (D)

None of the above (E)

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

If we calculate "testqg %rax, %rax" then check the "ZF" flag, what does the result indicate?

<70

(A) If ZF = 1, then %rax is negative, otherwise it is positive.

(B) If ZF = 1, then %rax is positive, otherwise it is negative.

cmpg b,a computes a - b, setsflags, discards result

(C) If ZF = 1, then %rax is zero, otherwise it is nonzero.

Which flags indicate thata < b ? (signed? unsigned?)

(D) If ZF = 1, then %rax is nonzero, otherwise it is zero.

testg b,acomputes a & b, setsflags, discards result

Common pattern:

testg %rax,

$rax

(E) None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

If we calculate "testqg %rax, %rax" then check the "ZF" flag, what does the result indicate?

<70

(A) If ZF = 1, then %rax is negative, otherwise it is positive.

(B) If ZF = 1, then %rax is positive, otherwise it is negative.

cmpg b,a computes a - b, setsflags, discards result

(C) If ZF = 1, then %rax is zero, otherwise it is nonzero.

Which flags indicate thata < b ? (signed? unsigned?)

(D) If ZF = 1, then %rax is nonzero, otherwise it is zero.

testg b,acomputes a & b, setsflags, discards result

Common pattern:

testg %rax,

$rax

(E) None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

2. Transfer control: choose next instruction

Different jump/branch instructions to different part of code by setting $rip.

Like BEQ, JMP

Like BEOQ,
but for more than
just “equal”

j Condition Description

Smp 1 Unconditional

je 7 Equal / Zero

ine —7F Not Equal / Not Zero
is SF Negative

ins ~SF Nonnegative

ig ~(SF"OF) &~ZF Greater (Signed)

jge ~(SF"OF) Greater or Equal (Signed)
31 (SF~OF) _ess (Signed)

jle (SF"OF) | ZF L ess or Equal (Signed)
ja ~CF&~7F Above (unsigned)

ib CF Below (unsigned)

Jump for control flow

Jump immediately follows comparison/test.
Together, they make a decision:

if 3rcx == %rax then jump to label.”

~N

Label /

Name for address of
following item.

Interpreting Conditional Jumps

It is easier to read conditional jumps in x86-64 by comparing b
against a instead of looking at condition codes.

cmp b,a test b,a
je “Equal” a ==> a&b == 0
jne “Not equal” a !=> as&b != 0
js “Sign” (negative) a-b < 0 a&h < 0
jns (non-negative) a=b >= 0 a&b >= 0
jg “Greater” a>>ob a&b > 0
jge “Greater or equal” a >= b a&b >= 0
jl “Less" a <>b a&b < 0
jle "Less or equal” a <= b a&b <= 0
ja “Above” (unsigned >) a>>b a&b > 0U

jb “Below” (unsigned <) a <D>b a&b < 0U

Conditional branch example

long absdiff(long x,long y) {

{

result = x-vy;

absdiff:

cmpg
jle

subg
movq

Labels / metd

—>

Name for address of subqg

following item. movq
Jmp

How did the compiler create this?

3rsi,
L7

3rsi,
$rdi,

$rdi,
3rsi,
.18

Srdi

Srdi
$rax

Srsi
$rax

Introduced by Fran Allen, et al.
Won the 2006 Turing Award

Control-Flow Graph on the 200¢ -|
or ner WorkKk on compltiers.

Code flowchart/directed graph.

long absdiff(long x, long y){

Nodes = Basic Blocks: 7
ong result;
if (x > y) {

Straight-line code always
result = x-y;

executed together in order.

" Edges = Control Flow:

___________ Which basic block executes
""""""""" next (under what condition).

f | } else

| long result;

- if (x > y). else return result;
then elsel «_ }

result =

—
—
—
—
—
.
—
—

return result;

12

Control-Flow Graph

How do we represent this non-flat structure in a single instruction memory?

long result;
1f (x > y) else

2

A
return result;

13

Choose a linear order of basic blocks.

long result;
1f (1(x > vy))

thenr else
A 4 There are many different
return result; linear orders!
In CS240, we'll accept
any one that “works”
result = y-x;

The compiler tries to
choose the “best” one

Translate basic blocks with jumps + labels

long result; cmpq %rsi, 3%rdi
i f (1(x > ¥)) Jjle Else
r subg $rsi, %Srdi
movqg $rdi, %rax
g retqg
return result;
subg $rdi, %$rsi
movdg 3rsi, %rax

result = y-x; Jmp End

Insert label if incoming
edge from a block other
than the block above

15

Execute absdiff

cmpq 3rsi,
jle Else
subqg $rsi,
movqg $rdi,
retq

subg rdi,
movdg 3rsi,

jmp End

srdi

Srdi
$rax

Srsi
$rax

Registers
¥rax

$rdi| 5

$rsi| 3

16

Execute absdiff

cmpg
jle

subq
movq

retq

subq
movq
jmp End

$rsi,
Else

3rsi,
$rdi,

$rdi,
3rsi,

Srdi

srdi
srax

Srsi
$rax

Registers

srax| 2

$rdi| 5 2

$rsi| 3

17

Execute absdiff

cmpg
jle

subg
movq

retq

subq
movq
jmp End

$rsi,
Else

3$rsi,
$rdi,

$rdi,
3rsi,

Srdi

Srdi
$rax

Srsi
$rax

Registers

srax| 2

$rdi| 5 2

$rsi| 3

18

Execute absdiff

cmpq 3rsi,
jle Else
subqg $rsi,
movqg $rdi,
retq

subg rdi,
movdg 3rsi,

jmp End

srdi

Srdi
$rax

Srsi
$rax

Registers

$rax

Srdi

Srsi| 7

19

Execute absdiff

cmpqg 3rsi,
jle Else
subqg $rsi,
movqg srdi,
retq

subq rdi,
movq 3rsi,
jmp End

Srdi

Srdi
$rax

srsi
srax

Registers
Frax| 3

Srdi

Srsi|l + 3

20

Execute absdiff

cmpqg 3rsi,
jle Else
subqg $rsi,
movqg srdi,
retq

subg srdi,
movdg 3rsi,

jmp End

Srdi

Srdi
$rax

Srsi
$rax

Registers
Frax| 3

Srdi

Srsi|l + 3

21

Compile if-else

long wacky(long x, long vy){ wacky:

{

result = x;

Recall:
X is available in $rdi
y is available in $rs1i
Calculate result in $rax for return

Instructions to use (one or more of)

movqg, addqg, cmpg, Jg or jle, leaqg

Hint: be careful not to overwrite x, V!

Compile if-else

long wacky(long x, long y){ wacky: Incomplete first attempt
{
result = x;
}
Then:
}
Recall: Else:
x is available in $rdi Oops, we overwrote y!
y is available in $rsi Now can’t compute y + 2
Calculate result in $rax for return
Group task: fix/complete this code by
Instructions to use (one or more of) filling in x86 for each block
movqg, addqg, cmpg, Jg or jle, leaqg

Hint: be careful not to overwrite x, v!

Compile if-else (solution #1)

Recall:

long wacky(long x,

{

result = x;

long y){

X is available in $rdi

y is availablein $rsi

Calculate result in $rax for return

wacky:

movqg %rdi,

Else:

addg $2,

movq %rsi,

Jjmp

End

$rax

Srsi

$rax

24

Compile if-else (solution #2) - 1eaq

long wacky(long x, long v){ wacky:
{
result = x;
}
movqg %rdi, %rax
}
Recall:
, , . , Else:
X is available in $rdi N . N
leag 2(%rs1i), 3rax
y is available in 3rs1 imp End
Calculate result in $rax for return

Encoding jumps: PC-relative addressing

Unlike HW ISA, x86-64 jumps can use relative offsets (distance, not address)

0x100 cmpg 3rax, 3srbx 0x1000
0x102 je 0x70 0x1002
0x104 " ‘l 0x1004
0x174 addg 3rax, %rbx 0x1074

PC-relative offsets support relocatable code.
Absolute branches do not (or it's hard).

Fill out the x86 partner form (even if solo)

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BADCAN IT BE?

OR OSE ONE LITTLE goto main-sub3;
‘GOTo* INSTEAD.

\ .]

?)& (; M *COMPILE* Y

https://forms.gle/RnB69moBmeNbNB8F7

https://forms.gle/RnB69moBmeNbNB8F7

CS 240
Foundations of Computer Systems

x86 Control Flow

(Part A, Part B)
Condition codes, comparisons, and tests
|[Un]Conditional jumps and conditional moves
Translating if-else, loops, and switch statements

https://cs.wellesley.edu/~cs240/

WELLESLEY

A\ 4

28

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

while loop

long fact do(long x) {

do {
result = result * x;
X =X - 1;

}

return result;

}

|
—
we

long result

result result*x;

return result;

Yes

29

do while loop

fact do:

long result = 1; movg $1,%rax

L1l

result = result*x; imulg %rdi, %rax
X = x - 1 decqg %rdi

(x > 1) 7 Yes cmpqg $1,%rdi

No® jg .L11

retq

Why put the loop condition at the end?

30

while loop

long fact while(long x){
0

{ long result = 1;

result = result * x;
X =X - 1;

}

return result;
} X = xXx - 1;

result = result*x;

long result = 1;

(x > 1) ?

No (x > 1) 2 ;No

. 4 Yes
return result;

result = result*x;

Yes

(3

X = xXx - 1; \

This order is used by GCC for x86-64. Why?
" return result;

while loop

long fact while(long x){
0

{

result = result * x;
X =X - 1;

}

return result;

}

int result = 1;

result = result * x;

X = x - 1;

(x > 1) ?

m1

return result;

Yes

Full x86-64:

fact while:
movg $1, %rax
jmp .L34

.L35:
imulg %rdi, %rax
decqg %rdi

.L34:
cmpg S$1, %$rdi
79 .L35
retq

32

for loop translation

for loops are syntactic
sugar for while loops:
we can just translate

for
towhile

for (Initialize; Test; Update) {

for

= result * x;

Xy

(result = 1; p != 0; p = p>1) {
(p & Ox1) {
result

Body
}
Initialize ;
while (Test) {
Body ;
Update;
}
Initialize
odate
Test ?
fNo

Yes

result = 1:

1f (p & 0x1) {
result = result*x;

X * X
p >> 1;

(p != 0) ?

? No

Yes

33

for loop: square-and-multiply optional

/* Compute x raised to nonnegative power p */
int power(int x, unsigned int p) {
int result;
for (result = 1; p != 0; p = p>>1) {
1f (p & 0Ox1) {
result = result * x;

}
X

— X*X;

} 0 .. O 1 0 1 1 =11
return result; 12731 % % 116 * w8 * 14 * y2 * y1 = y11

}
1=x0 x=x1
Algorithm
Exploit bit representation: p = py + 2p, + 22p, + ... 27-1p,,, Example
Gives:x? =29 212 (222) % ... (...((2, 1D ?)...) 2 3t =317 3T
zi=1 whenp; =0 ~—— = 31 % 32 * ((32)2)2
n—1 times

Zzi=x whenp,;=1

Complexity O(log p) = O(si1zeof(p))

for loop: power iterations

/* Compute X raised to nonnegative power p */
int power(int x, unsigned int p) {
int result;
for (result = 1; p != 0; p = p>1) {
1f (p & 0x1) {
result = result * x;

}
X = X*X;
}
return result;
} lteration| result X P
0 1 3] 11 = 1011,
1 3 9 5 = 101,
2 27 81 2 = 10,
3 27| 6561 1 = 1,
4 177147430467 0,

(Aside) Conditional Move

long absdiff(long x,long y) {

cmov src, dest {

| result = x - y;
if (Test) Dest < Src)

long absdiff(long x, long y) {
return x>y ? X-y : y-X;

) }
absdiff:
MOVQ srdil, %Srax
subg $rsil, srax
movqg %rs;, srdx Why? Branch prediction in pipelined/0Oo0 processors.
subg srdi, srdx
cmpq srsl, srdl

cmovle $rdx, %rax
ret

(Aside) Bad uses of conditional move

Expensive Computations

val = Test(x) ? Hardl(x) : Hard2(x);

Risky Computations

val = p ?2 *p : 0;

Computations with side effects

val = x > 0 ? x++ : xX--3

switch statement

long switch eg (long x, long y, long 2z)

long w = 1;
switch(x) {
case 1:

W:y*z;

(4

case 3:

case 5:

case 6:
W —-= Z;

w = 2;

}

return w;

{

break; Fall through cases
case 2: éf’/”/”/”//’
W =Y - Z;

w += z; Multiple case labels

break:; N Missing cases use default
default:

Lots to manage:
use a jump table.

38

switch jump table structure

C code:
switch(x) {
case 1l: <some code>
break:;
case 2: <some code>
case 3: <some code>
break;
case 5:
case 6: <some code>
break:;
default: <some code>
}

Translation sketch:

else

addr =
goto addr;

1f (0 <= X && X <= 6)
jumptable([x];

goto default;

Code
Blocks

Jump
Table

O L N W B U1 O

Memory

Each row in the jump table is the
address of the code for that case

39

read-only data
(not instructions)

\

.section .rodata

.align 8 €«— alignment

.L4:
.quad .L8
.quad L3
.quad . L5
.quad .L9
.quad .L8

.quad L7
.quad L7

\

“quad” = q suffix = 8-byte value

R H H W H®

T T T R

8-byte

o O s W NN BKEFL O

switch jump table assembly declaration

switch(x) {

N

case 1: //
w =Yy * zj
break;

—case 2: //
W =Y - 2Z;

~case 3: //
w += Z;
break;

ase 5:

case 6: //
W —-= Z;
break;

default: //
w = 2;

.L3

. L5

.L9

L7

. L8

40

switch case dispatch

long w = 1;
switch(x) {

}

return w;

}

long switch eg(long x, long y, long z) {

Jump if above (unsigned, but...)

switch eg:
movl $1, \%eax
cmpg $6, %rdi
ja . L8
jmp * L4(,%rd1i,8)

\

indirect jump

Jump table
.section .rodata
.align 8
.Ld:
.quad L8 # x == 0
.quad L3 # x == 1
.quad L5 # x == 2
.quad L8 # x == 4
.quad L7 # x == 5
.quad L7 # x == 6

41

switch cases

switch(x) {

case 1: // .L3
w =Y * 2;
break:

case 2: // .L5
W =Y - Z;

case 3: // L9
w += Z;
break;

case 5: // L7

case 6: // L7
W -= Z:
break:

default: // .L8
w = 2;

}

return w;

.L3: movqg
imulg
retq

.L5: movqg
subg

.L9:
addg
retq

L7
subg
retq

.L8:
mov.l
retq

Reg.
$rdi
3rsi
. : . Frdx
3rsl, %rax]
5 5 s YaX
3rdx, %rax
e—— “inlined" return
3rsl, %rax
3rdx, %rax
€&———+—— Fall-through
3rdx, %rax
3rdx, %rax
S2, %eax

Aside: mov1l is used because 2 is a small positive value that fits

in 32 bits. High order bits of %rax get set to zero automatically.

It takes fewer bytes to encode a literal mov1 vs a movqg.

42

Assembly Code |[switch_eg:

switch machine code

cmpq , Srdi

ja .L8

Jmp *.L4(,%rdi,8)
Disassembled Object Code T

00000000004004f6 <switch eg>:
« e When looking as disassembled
4004fd: 77 2b ja 40052a <switch eg+0x34> | code: an indirect jump like this
4004ff: ££f 24 f£d d0 05 40 00 jmpqg * (,%rdi, 8) «—L isasignit’'sajump table
encoding a switch

Inspect jJump table contents using GDB.

Examine contents as 7 addresses

Address of code for case 0O Address of code for case 1

(gdb) x/7a 4/’////’ v

0x4005d0: 0x40052a <switch eg+52> 0x400506 <switch eg+16>
0x4005e0: 0x40050e <switch eg+24> 0x400518 <switch eg+34>
0x4005f0: 0x40052a <switch eg+52> 0x400521 <switch eg+43>

0x400600: 0x400521 <switch eg+43>—— Address of code for case 6

Would you implement this with a jump table?

switch(x) {
case O: <some code>
break;
case 10: <some code>
break;
case 52000: <some code>
break;
default: <some code>
break;
}

Would it be a good idea to implement this switch statement with a jump table?

Yes

NoO

Maybe

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Would it be a good idea to implement this switch statement with a jump table?

Yes
0%
switch(x) { No
case 0: <some code> 0%
break;
case 10: <some code> Maybe
break: 0%
case 52000: <some code>
break;
default: <some code>
break;
}

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Would it be a good idea to implement this switch statement with a jump table?

Yes
0%
switch(x) { No
case 0: <some code> 0%
break;
case 10: <some code> Maybe
break: 0%
case 52000: <some code>
break;
default: <some code>
break;
}

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

