
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

x86 Control Flow
(Part A, Part B)

Condition codes, comparisons, and tests

[Un]Conditional jumps and conditional moves

Translating if-else, loops, and switch statements

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Motivation

2

Recall: instruction memory is a flat list (with the program counter as index)!

if/while/for/break/continue

We don’t get to keep

Instruction pointer

(a.k.a. program counter)

register holds address of next instruction to execute

%rip

Address Contents
0x… <instruction>
0x… <instruction>
0x… <instruction>
0x… <instruction>
0x… <instruction>
…

Conditionals and Control Flow

Two key pieces

1. Comparisons and tests: check conditions

2. Transfer control: choose next instruction

3

Instruction pointer

(a.k.a. program counter)

register holds address of next instruction to execute

Condition codes (a.k.a. flags)

1-bit registers hold flags set by last ALU operation

	 	 Zero Flag	 	 result == 0

	 	 Sign Flag	 	 result < 0

	 	 Carry Flag	 	 carry-out/unsigned overflow

	 	 Overflow Flag	 two's complement overflow

%rip

CF

ZF

SF

OF

Processor Control-Flow State
To implement familiar C constructs

● if else
● while
● do while
● for
● break
● continue

Similar to BEQ, JMP in HW ISA (but more options)

1. Compare and test: conditions
cmpq b,a computes a - b,	sets flags, discards result

	 	 Which flags indicate that a < b ? (signed? unsigned?)

4

testq b,a computes a & b,	 sets flags, discards result

	 	 Common pattern:

testq %rax, %rax

What do ZF and SF indicate?

5

6

7

2. Transfer control: choose next instruction
Different jump/branch instructions to different part of code by setting %rip.

8

j__ Condition Description

Conditional

jumps

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

Unconditional

jump jmp 1 Unconditional

Like BEQ, JMP

Like BEQ,

but for more than

just “equal”

Jump for control flow

9

cmpq %rax,%rcx
je label
…
…
…
addq %rdx,%raxlabel:

Label

Name for address of

following item.

Jump immediately follows comparison/test.

Together, they make a decision:

"if %rcx == %rax then jump to label."

Executed only if
%rax ≠ %rcx

Interpreting Conditional Jumps
It is easier to read conditional jumps in x86-64 by comparing b
against a instead of looking at condition codes.

10

cmp b,a test b,a

je “Equal” a == b a&b == 0

jne “Not equal” a != b a&b != 0

js “Sign” (negative) a-b < 0 a&b < 0

jns (non-negative) a-b >= 0 a&b >= 0

jg “Greater” a > b a&b > 0

jge “Greater or equal” a >= b a&b >= 0

jl “Less” a < b a&b < 0

jle ”Less or equal” a <= b a&b <= 0

ja “Above” (unsigned >) a > b a&b > 0U

jb “Below” (unsigned <) a < b a&b < 0U

 cmpq 5, (p)

je: *p == 5 .

jne: *p != 5 .

jg: *p > 5 .

jl: *p < 5 .

 testq a, a

je: a == 0 .

jne: a != 0 .

jg: a > 0 .

jl: a < 0 .

Conditional branch example

11

long absdiff(long x,long y) {
 long result;
 if (x > y) {
 result = x-y;
 } else {
 result = y-x;
 }
 return result;
}

How did the compiler create this?

Labels

Name for address of

following item.

absdiff:
cmpq %rsi, %rdi
jle .L7
subq %rsi, %rdi
movq %rdi, %rax

.L8:
retq

.L7:
subq %rdi, %rsi
movq %rsi, %rax
jmp .L8

Nodes = Basic Blocks:

Straight-line code always
executed together in order.

Control-Flow Graph

12

long absdiff(long x, long y){
 long result;
 if (x > y) {
 result = x-y;
 } else {
 result = y-x;
 }
 return result;
}

long result;
if (x > y) else

result = x-y; result = y-x;

return result;

Code flowchart/directed graph.

Introduced by Fran Allen, et al.

Won the 2006 Turing Award

for her work on compilers.

Edges = Control Flow:

Which basic block executes
next (under what condition).

then else

13

long result;
if (x > y) else

result = x-y; result = y-x;

return result;

Control-Flow Graph

How do we represent this non-flat structure in a single instruction memory?

Choose a linear order of basic blocks.

14

long result;
if (!(x > y))

result = x-y;

result = y-x;

return result;

then else

There are many different
linear orders!

In CS240, we’ll accept
any one that “works”

The compiler tries to
choose the “best” one 

Translate basic blocks with jumps + labels

15

long result;
if (!(x > y))

result = x-y;

result = y-x;

return result; Else:

End:

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

subq %rdi, %rsi
movq %rsi, %rax
jmp End

retq

Insert label if incoming
edge from a block other
than the block above 

Execute absdiff

16

%rax

%rdi

%rsi

5

3

Registers

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

retq

Else:

End:

subq %rdi, %rsi
movq %rsi, %rax
jmp End

ex

Execute absdiff

17

%rax

%rdi

%rsi

2

5 2

3

Registers

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

retq

Else:

End:

subq %rdi, %rsi
movq %rsi, %rax
jmp End

ex

Execute absdiff

18

%rax

%rdi

%rsi

2

5 2

3

Registers

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

retq

Else:

End:

subq %rdi, %rsi
movq %rsi, %rax
jmp End

ex

Execute absdiff

19

%rax

%rdi

%rsi

4

7

Registers

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

retq

Else:

End:

subq %rdi, %rsi
movq %rsi, %rax
jmp End

ex

Execute absdiff

20

%rax

%rdi

%rsi

3

4

7 3

Registers

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

retq

Else:

End:

subq %rdi, %rsi
movq %rsi, %rax
jmp End

ex

Execute absdiff

21

%rax

%rdi

%rsi

3

4

7 3

Registers

cmpq %rsi, %rdi
jle Else

subq %rsi, %rdi
movq %rdi, %rax

retq

Else:

End:

subq %rdi, %rsi
movq %rsi, %rax
jmp End

ex

Compile if-else

22

long wacky(long x, long y){
 long result;
 if (x + y > 7) {
 result = x;
 } else {
 result = y + 2;
 }
 return result;
}

Recall:

x is available in %rdi

y is available in %rsi
Calculate result in %rax for return

Instructions to use (one or more of)

movq, addq, cmpq, jg or jle, leaq

Hint: be careful not to overwrite x, y!

wacky:

ex

Compile if-else

23

long wacky(long x, long y){
 long result;
 if (x + y > 7) {
 result = x;
 } else {
 result = y + 2;
 }
 return result;
}

Recall:

x is available in %rdi

y is available in %rsi
Calculate result in %rax for return

Instructions to use (one or more of)

movq, addq, cmpq, jg or jle, leaq

Hint: be careful not to overwrite x, y!

wacky:

ex

 addq %rdi, %rsi
 cmpq $7, %rsi
 jle Else

 Then:

 Else:

Incomplete first attempt

Oops, we overwrote y!

Now can’t compute y + 2

Group task: fix/complete this code by

filling in x86 for each block

Compile if-else (solution #1)

24

long wacky(long x, long y){
 long result;
 if (x + y > 7) {
 result = x;
 } else {
 result = y + 2;
 }
 return result;
}

wacky:
 movq %rdi, %rdx
 addq %rsi, %rdx
 cmpq $7, %rdx
 jle Else

 movq %rdi, %rax

 End:
 retq

 Else:
 addq $2, %rsi
 movq %rsi, %rax
 jmp End

ex

Recall:

x is available in %rdi

y is available in %rsi
Calculate result in %rax for return

Compile if-else (solution #2) - leaq

25

long wacky(long x, long y){
 long result;
 if (x + y > 7) {
 result = x;
 } else {
 result = y + 2;
 }
 return result;
}

wacky:
 leaq (%rdi, %rsi), %rdx
 cmpq $7, %rdx
 jle Else

 movq %rdi, %rax

 End:
 retq

 Else:
 leaq 2(%rsi), %rax
 jmp End

ex

Recall:

x is available in %rdi

y is available in %rsi
Calculate result in %rax for return

Encoding jumps: PC-relative addressing

PC-relative offsets support relocatable code.

Absolute branches do not (or it's hard).

26

0x100 cmpq %rax, %rbx 0x1000  
0x102 je 0x70 0x1002  
0x104 … 0x1004  
… … …  
0x174 addq %rax, %rbx 0x1074  

Unlike HW ISA, x86-64 jumps can use relative offsets (distance, not address)

27

Fill out the x86 partner form (even if solo)

https://forms.gle/RnB69moBmeNbNB8F7

https://forms.gle/RnB69moBmeNbNB8F7

CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

x86 Control Flow
(Part A, Part B)

Condition codes, comparisons, and tests

[Un]Conditional jumps and conditional moves

Translating if-else, loops, and switch statements

28

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

long fact_do(long x) {
 // Assume x >= 1
 long result = 1;
 do {
 result = result * x;
 x = x - 1;
 } while (x > 1);
 return result;
}

do while loop

29

long result = 1;

result = result*x;
x = x - 1;

(x > 1) ?

return result;

Yes
No

do while loop

30

fact_do:
movq $1,%rax

.L11:
imulq %rdi,%rax
decq %rdi

cmpq $1,%rdi
jg .L11

retq

Why put the loop condition at the end?

long result = 1;

result = result*x;
x = x - 1;

(x > 1) ?

return result;

Yes
No

long fact_while(long x){  
 // Assume >= 0
 long result = 1;
 while (x > 1) {
 result = result * x;
 x = x - 1;
 }
 return result;
}

while loop

31

long result = 1;

result = result*x;
x = x - 1;

(x > 1) ?

return result;
This order is used by GCC for x86-64. Why?

long result = 1;

result = result*x;
x = x - 1;

(x > 1) ?

return result;

Yes
No

Yes

No

fact_while:
 movq $1, %rax
 jmp .L34

.L35:
 imulq %rdi, %rax
 decq %rdi

.L34:
 cmpq $1, %rdi
 jg .L35

 retq

while loop

32

int result = 1;

result = result * x;
x = x - 1;

(x > 1) ?

return result;

Yes
No

long fact_while(long x){  
 // Assume >= 0
 long result = 1;
 while (x > 1) {
 result = result * x;
 x = x - 1;
 }
 return result;
}

Full x86-64:

for loop translation

33

for (Initialize; Test; Update) {  
Body 

}

for (result = 1; p != 0; p = p>>1) {
 if (p & 0x1) {
 result = result * x;
 }
 x = x * x;
}

result = 1;

if (p & 0x1) {
 result = result*x;
}
x = x * x;
p = p >> 1;

(p != 0) ? Yes
No

Initialize;
while (Test) {
 Body ;

 Update;

}

for loops are syntactic
sugar for while loops:

we can just translate
for

to while

Initialize

Body
Update

Test ? Yes
No

for loop: square-and-multiply

Algorithm

Exploit bit representation: p = p0 + 2p1 + 22p2 + … 2n–1pn–1

Gives: xp = z0 · z1 2 · (z2 2) 2 · … · (…((zn –12) 2)…) 2

zi = 1 when pi = 0
zi = x when pi = 1

Complexity O(log p) = O(sizeof(p)) 34

/* Compute x raised to nonnegative power p */
int power(int x, unsigned int p) {

int result;
for (result = 1; p != 0; p = p>>1) {

if (p & 0x1) {
result = result * x;

 }
x = x*x;

 }
return result;

}

n–1 times

Example

311	 = 31 * 32 * 38

	 = 31 * 32 * ((32)2)2

 xm * xn = xm+n

0 ... 0 1 0 1 1 = 11

12^31 * ... * 116 * x8 * 14 * x2 * x1 = x11

1 = x0 x = x1

optional

for loop: power iterations

35

/* Compute x raised to nonnegative power p */
int power(int x, unsigned int p) {

int result;
for (result = 1; p != 0; p = p>>1) {

if (p & 0x1) {
result = result * x;

 }
x = x*x;

}
return result;

} iteration
s

result x p
0 1 3 11 = 10112
1 3 9 5 = 1012
2 27 81 2 = 102
3 27 6561 1 = 12
4 177147 430467

21
02

optional

(Aside) Conditional Move

36

absdiff:
 movq %rdi, %rax

 subq %rsi, %rax

 movq %rsi, %rdx

 subq %rdi, %rdx

 cmpq %rsi, %rdi

 cmovle %rdx, %rax

 ret

long absdiff(long x, long y) {
 return x>y ? x-y : y-x;
}

long absdiff(long x,long y) {
 long result;
 if (x > y) {
 result = x - y;
 } else {
 result = y - x;
 }
 return result;
}

Why? Branch prediction in pipelined/OoO processors.

cmov_ src, dest

if (Test) Dest Src←

Expensive Computations

(Aside) Bad uses of conditional move

37

 val = Test(x) ? Hard1(x) : Hard2(x);

Risky Computations

 val = p ? *p : 0;

Computations with side effects

 val = x > 0 ? x++ : x--;

long switch_eg (long x, long y, long z) {
 long w = 1;
 switch(x) {
 case 1:
 w = y * z;
 break;
 case 2:
 w = y - z;
 case 3:
 w += z;
 break;
 case 5:
 case 6:
 w -= z;
 break;
 default:
 w = 2;
 }
 return w;
}

switch statement

38

Fall through cases

Multiple case labels

Missing cases use default

Lots to manage:

 use a jump table.

switch jump table structure

39

switch(x) {
 case 1: <some code>
 break;
 case 2: <some code>
 case 3: <some code>
 break;
 case 5:
 case 6: <some code>
 break;
 default: <some code>
}

6
5
4
3
2

Jump

Table

Code

Blocks

Memory

Translation sketch:

if (0 <= x && x <= 6)
 addr = jumptable[x];
 goto addr;
else
 goto default;

C code:

1
0

Each row in the jump table is the
address of the code for that case

switch jump table assembly declaration

40

.section .rodata
 .align 8
.L4:
.quad .L8 # x == 0
.quad .L3 # x == 1
.quad .L5 # x == 2
.quad .L9 # x == 3
.quad .L8 # x == 4
.quad .L7 # x == 5
.quad .L7 # x == 6

 switch(x) {
 case 1: // .L3
 w = y * z;
 break;
 case 2: // .L5
 w = y - z;

 case 3: // .L9
 w += z;
 break;
 case 5:
 case 6: // .L7
 w -= z;
 break;
 default: // .L8
 w = 2;
 }

“quad” = q suffix = 8-byte value

read-only data

(not instructions)

8-byte

alignment

switch case dispatch

41

switch_eg:
movl $1, %eax
cmpq $6, %rdi
ja .L8
jmp *.L4(,%rdi,8)

long switch_eg(long x, long y, long z) {
 long w = 1;
 switch(x) {
 . . .
 }
 return w;
}

Jump table

.section .rodata
 .align 8
.L4:
.quad .L8 # x == 0
.quad .L3 # x == 1
.quad .L5 # x == 2
.quad .L9 # x == 3
.quad .L8 # x == 4
.quad .L7 # x == 5
.quad .L7 # x == 6

Jump if above (unsigned, but…)

indirect jump

switch cases

42

.L3: movq %rsi, %rax
 imulq %rdx, %rax
 retq
.L5: movq %rsi, %rax
 subq %rdx, %rax
.L9:
 addq %rdx, %rax
 retq

.L7:
 subq %rdx, %rax
 retq
.L8:
 movl $2, %eax
 retq

 switch(x) {
 case 1: // .L3
 w = y * z;
 break;
 case 2: // .L5
 w = y - z;
 case 3: // .L9
 w += z;
 break;
 case 5: // .L7
 case 6: // .L7
 w -= z;
 break;
 default: // .L8
 w = 2;
 }
 return w;

“inlined" return

Fall-through

Aside: movl is used because 2 is a small positive value that fits  
in 32 bits. High order bits of %rax get set to zero automatically.  
It takes fewer bytes to encode a literal movl vs a movq.

Reg. Use

%rdi x
%rsi y
%rdx z
%rax w

switch machine code

43

00000000004004f6 <switch_eg>:
 . . .
 4004fd: 77 2b ja 40052a <switch_eg+0x34>
 4004ff: ff 24 fd d0 05 40 00 jmpq *0x4005d0(,%rdi,8)

switch_eg:
 . . .
 cmpq $6, %rdi
 ja .L8
 jmp *.L4(,%rdi,8)

Assembly Code

Disassembled Object Code

Inspect jump table contents using GDB.

Examine contents as 7 addresses

(gdb) x/7a 0x4005d0

0x4005d0: 0x40052a <switch_eg+52> 0x400506 <switch_eg+16>

0x4005e0: 0x40050e <switch_eg+24> 0x400518 <switch_eg+34>

0x4005f0: 0x40052a <switch_eg+52> 0x400521 <switch_eg+43>

0x400600: 0x400521 <switch_eg+43>

Address of code for case 0 Address of code for case 1

Address of code for case 6

When looking as disassembled
code: an indirect jump like this
is a sign it’s a jump table
encoding a switch

Would you implement this with a jump table?

44

switch(x) {
 case 0: <some code>
 break;
 case 10: <some code>
 break;
 case 52000: <some code>
 break;
 default: <some code>
 break;
}

ex

45

46

47

