WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

X86: Procedures
and the Call Stack

The call stack discipline
Xx86 procedure call and return instructions
x86 calling conventions
X386 register-saving conventions

https://cs.wellesley.edu/~cs240/



https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

X86: Procedures and the Call Stack

Outline

1. Motivation

a. (video 1) What we have seen so far

b. (video 1) Why we can’t implement procedure calls with jumps alone
(video 1) High-level call stack example
Procedure control flow instructions: call and ret
Procedure call example (in depth!) on whiteboard

Caller vs/callee example

o U A W N

(Covered in lab, video) Recursion example



Does understanding the call stack really matter?

® Alexa VanHattum 9:31 AM Recent research chat on Slack with ~ Yes, the call stack comes up in
4 looking at popent now! PhD student collaborator large-scale software

engineering/research!

avh veri/veri - (popcnt-expand)$ ./script/veri.sh -- --rule popcnt_8
Blocking waiting for file lock on build directory
Compiling cranelift-isle-veri v0.1.0
Writing generated file:

/var/folders/9r/4bgb@1xs6@b8kpv59bk68cpc@@dgn/T/tmp .AsPxX054/clif_lower.1is
le

#990 popcnt_8&

thread 'main' has overflowed 1ts stack
fatal runtime error: stack overflow

mbm 9:36 AM

¥» [here's an environment variable you can set td increase stack size.fThe default is not

that big.

Alexa VanHattum 10:49 AM

#d process And with alloop instead of recursion




Why procedures?
Why functions? Why methods?

int contains char(char* haystack, char needle) {

while (*haystack != '\0") {
1f (*haystack == needle) return 1;
haystack++;

}

return 0;

}

Answer: procedural abstraction



Implementing procedures

Have we already seen
how this is done?

1. How does a caller pass arguments to a procedure?

2. How does a caller receive a return value from a procedure?

3. How does a procedure know where to return
(what code to execute next when done)?

4. Where does a procedure store local variables?

5. How do procedures share limited registers and memory?



Call Chain

Procedure call/return: Jump? yio
yoo(..) A who
who () ;
}
who (..) { yoo:

o o o |l

jmp who

ru(..) { jmp back

But what if we want to call a function from multiple places in the code?



Call Chain

Procedure call/return: Jump? yoo

l

yoo (..) { who

AN

who () ; ru ru
o o o

Y

who(..) { who: |
o o o 1

jmp ru v

ru(); 5| 6 3,7

e o o v

) jmp ru 4

ru(..) { | 9 o jmp

e o o v

}

But what if we want to call a function from multiple places in the code?



Implementing procedures

requires separate storage per call!

(not just per procedure)

1. How does a caller pass arguments to a procedure?
2. How does a caller receive a return value from a procedure?

3. How does a procedure know where to return
(what code to execute next when done)?

4. Where does a procedure store local variables?

1. How do procedures share limited registers and memory?



Addr
2N-14

Memory Layout

Stack
v

T

Heap

Statics

Literals

Text

Perm

RW

RW

RW

R

Contents

Procedure context

Dynamic
data structures

Global variables/
static data structures

String literals

Instructions

Managed by Initialized

Compiler Run-time
Programmer,
malloc/free, new/ Run-time
GC
Compiler/
Start
Assembler/Linker artip
Compiler/
Start
Assembler/Linker artip
C 1
ompiler/ Startup

Assembler/Linker



Call stack tracks context

Yoo ((...)
{
who();
:*who(m)
JAN
amI () ;
;mI(); amI (...)
. {
J 1f(..){
amlI ()
'
'

Example
Call Chain
YOO
\ 4
who
v \
amI amI
\ 4
aml
\ 4
aml

Procedure amI is recursive
(calls itself)



Call stack tracks context

zoo(m)
— 2

who () ;

m)> voo

3rSp

Stack

yOO

11



Call stack tracks context

yoo_l )

{ |who(...)

Iro

amiI () ;

amiI () ;

YOO

|
» who

%rsp—>

Stack

yOO

who

12



Call stack tracks context Stack

yoo_l \
{ who (...)

{ [amI(...)

b

aml ()

} SrsSp




Call stack tracks context

fa ¥ A

{

who (...)

amI (...)

{ |amI(...)

{
' if ()

amlI ()

YOO

who

aml

aml

Stack




Call stack tracks context

YOO

who

aml

aml

aml

Stack




Call stack tracks context

YOO

who

aml

aml

aml

Stack




Call stack tracks context

YOO

who

aml

v
mm)) ant

Stack

17



Call stack tracks context

YOO

who

aml

Stack

. .
Rttt i e i e e e e e A e A A A A R A A A R A A A A A R A A R A A
. -

18



Call stack tracks context Stack

ool )\
y YOO IIIIIIIIII

{ |who(...)

: l
: > who 7o°
amI();

amI();
3YSp




Call stack tracks context Stack

yool ) YOO
{ |W (..)
{|amI(m) v
{ WhO\
« 1f(){ amT
g amlI()
P I
} ®
} 3rSp




Call stack tracks context

YOO

who

aml

3rSp

Stack

21



Call stack tracks context

yoo_l )

{ |who(...)
{

amI();

amI();
‘}

YOO

|
.l")»who

ISP

Stack

yOO

who

22



Call stack tracks context

Yoo ((...)

who () ;

1:

) voo

3rSp

Stack

yOO

23



In x86, where is the return address located for a "call" instruction?

In the instructions of the caller function

In the instructions of the callee (being called) function

On the call stack, once per function

On the call stack, once per call

None of the above

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



In x86, where is the return address located for a "call" instruction? 70

In the instructions of the caller function

0%
In the instructions of the callee (being called) function

0%
On the call stack, once per function

0%
On the call stack, once per call

0%
None of the above

0%

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



In x86, where is the return address located for a "call" instruction? 70

In the instructions of the caller function

0%
In the instructions of the callee (being called) function

0%
On the call stack, once per function

0%
On the call stack, once per call

0%
None of the above

0%

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



The call stack supports procedures

Saved Registers

Stack frame: section of stack 4
Caller . |
used by one procedure call to Local Variables .
. . Frame higher
store context while running.

Extra Arguments addresses
to callee |

Base pointer 3rb Return Address
P ° P where to continue on return
Procedure code manages

stack frames explicitly. Callee
e Setup: allocate space

stack grows
Saved Registers toward
Frame

lower addresses
at start of procedure. Local Variables I
e Cleanup: deallocate space v

before return.

stackpointer srsp | <t



Procedure control flow instructions

Procedure call: callq target

1. Push return address on stack
2. Jump to target

Return address: Address of instruction after call.

\ 400544: callg 400550 <mult2>

400549: movqg srax, (3rbx)

Procedure return: retqg

1. Pop return address from stack
2. Jump to return address

28



Call example

Before callq Memory
O0x7£d£30
0000000000400540 <multstore>: 0x7£d£28
o 3rsp—0x7£d4£20
400544: Callq 400550 <mult2> O0x7fdf18 1| 272 7? :
400549: mov 3rax, (3rbx) b==mm===-
. Irsp Srip
) 0x7£d£20 0x400544

0000000000400550 <mult2>:
400550: mov $rdil, $rax

400557: retqg

callqg target

1. Push return address on stack
2. Jump to target




Call example

Before callq Memory
O0x7£df£30
00?0000000400540 <multstore>: 0x7£df28
. srsp—— 0x7£df20
400544 callq 400550 <mult2> Ox7fdf18
400549: mov ¥rax, (3rbx)
. 3rsp Srip
) 0x7£d£20 0x400544
0000000000400550 <mult2>:
400550: mov $rdi, $rax After callq Memory
° O0x7£d£30 ®
400557: retqg Ox7fatzs °
O0x7£df20 o
3rSp »0x7£d£18 | 0x400549
callqg target |
TSP 3r1p

1. Push return address on stack
2. Jump to target Ox7£d£f18 0x400550




Return example

0000000000400540 <multstore>:

400544: callqg
400549: mov

400550 <mult2>
¥rax, (3rbx)

0000000000400550 <mult2>:
400550: mov $rdi, $rax

400557: retq

retq

1. Pop return address from stack
2. Jump to return address

Before retq Memory
O0x7£d£f30 ®
O0x7£df28 ®
O0x7£df20 ®

ISP »0x7£fd4d£f18 | 0x400549

Srsp Srip

O0x7£4£f18 0x400557




Return example

0000000000400540 <multstore>:

400544: callqg
400549: mov

400550 <mult2>
srax, (srbx)

0000000000400550 <mult2>:
400550: mov $rdi, $rax
400557: retq

retq

1. Pop return address from stack
2. Jump to return address

Before retq Memory
0x7£d£30 °
0x7£df28 °
0x7£d£f20 ®

srsp— 0x7fdf18 | 0x400549

3rsp Srip
0x7f£df1l8 0x400557

After retq Memory
0x7£d£30
0x7£df28

srsp— 0x7£d4£20
0x7£df18

3rsp Srip

Ox7£d4d£20 400549




Procedure data flow conventions

Recall:

First 6 arguments: passed in registers Remaining arguments:
passed on stack (in memory)

8 rdi Diane’s H;gdh
Arg 2 | padresses
rsi ilk N
Arg 3 Dress
Arg 4 Costs
Arg 5 o
eS| w8 | <0
Arg 7 LOVW
Return Address Addresses

Return value: passed in $rax



Procedure call / stack frame example

long step up() {
long v1 = 240;
long v2 = increment(&vl,
«
return v1+v2;

61);

Passes address of local variable (in stack).

Uses memory through pointer.

/

step up:

400509: subg $8, %rsp
40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$S61, %esi
40051d: callg 4004cd <increment>
400522: addg (%rsp), %rax
400526: addg $8, %rsp
40052a: retqg

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retqg

long increment(long* p,
long x = *p;
long y = x + val;
*P =Y
return Xx;

long val) {




Procedure call example (step o)

long step up() {
long v1 = 240;
long v2 = increment(&vl, 61);

red line return v1+v2;

shows |1

Sri1ip

. [step up:

400509: subg $8, %rsp
40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$S61, %esi
40051d: callg 4004cd <increment>
400522: addgq (%rsp), %rax
400526: addg $8, %rsp
40052a: retq

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retqg

main called step up

Stack
Frames Memory
main
0x7£df2g| 0X40053b
<main-+8>
Ox7£d£20
Ox7£fdf1l8
$rax $rdi $rsi
Irsp Irip
Ox7£df28 0x400509

return
address
somewhere in




Procedure call example (step 1)

long step up()

{

long vl = 240;

long v2 = increment(&vl, 61);
return v1+v2;
'
step up:
400509: subg $8, %rsp
40050d: movqg $240, (3rsp)
400515: movg %$rsp, %$rdi
400518: movl S$S61, %esi
40051d: callg 4004cd <increment>
400522: addg (%rsp), %rax
400526: addg $8, %rsp
40052a: retq
increment:
4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retqg

Stack
Frames

main

0x7£df28

step_up {Ox? £d£20

Allocate space
for local vars

Memory

0x40053b

local variable

. 1 stored in
<malﬂ+8‘>/s":ack address
240 &=zrsp

vl
0x7fdf18
$rax $rdi $rsi
Irsp Irip
Ox7£d£f20 0x400515




Procedure call example (step 2)

long step up() {
long vl = 240; *
long v2 = increment(&vl, 61);
return v1+v2;

}

step up:

400509: subg S8, %rsp

40050d: movg $240, (%rsp)

400515: movqg %rsp, %rdi

400518: movl $61, %esi

40051d: callg 4004cd <increment>

400522: addg (%rsp), %rax

400526: addg $8, %rsp

40052a: retg

increment:

4004cd: movg (%rdi), %rax

4004d0: addg %rax, %rsi

4004d3: movg %rsi, (%rdi)

4004d6: retqg

Stack
Frames

main
0x7£fdf28
step_up {Ox7fdf20

O0x7£fdf18

Place args in registers before call

Set up args for call

to increment

Memory

0x40053b
<main-+8>

240
vl

* Move the two args to
the right registers

$rax $rdi $rsi
Irsp Irip
Ox7£d£f20 0x40051d




Procedure call example (step 2)

long step up() {
long vl = 240;
long v2 = increment(&vl, 61);
return v1+v2;
}
step up:
400509: subg S8, %rsp
40050d: movg $240, (%rsp)
400515: movqg %rsp, %rdi
400518: movl $61, %esi
40051d: callg 4004cd <increment>
400522: addg (%rsp), %rax
400526: addg $8, %rsp
40052a: retqg
increment:
4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retqg

Stack
Frames

main

step up {

Place args in registers

$rax

Set up args for call

to increment

Memory

0x7£df28

0x40053b
<main-+8>

0x7£df20

240
vl

* 3YrSp

O0x7£fdf18

before call

1st arg for
Increment

srdi l,

2nd arg for
Increment

$rsi l

Ox7£d£20

61

XSSP

3rip

0x7£df20

0x40051d




Procedure call example (step 3)

long step up() {

long vl = 240;
long v2 = increment(&vl, 61);
return v1+v2;
}
step up:
400509: subg $8, %rsp
40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$S61, %esi
40051d: callg 4004cd <increment>
400522: addgq (%rsp), 3%rax
400526: addg $8, %rsp
40052a: retqg
increment:
4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retqg

Call increment

Stack
Frames Memory
main
0x7£df2g| 0¥40053b
<main-+8>
O0x7£d£f20 240
vl
step up
0x7£df18 *Fill in

call has two steps
(1) Push return address on stack

(2) Jump to target

Srax Srdi $rsi

0x7£df20 61

Irsp Iril
Ox7£fd4df18 %Fill in

* 3rSp



long step up() {

long vl = 240;
long v2 = increment(&vl, 61);
return v1+v2;
}
step up:
400509: subg $8, %rsp
40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$S61, %esi
40051d: callg 4004cd <increment>
400522: addg (%rsp), %rax
400526: addg $8, %rsp
40052a: retqg
increment:
4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retqg

Procedure call example (step 3)

Stack
Frames

main

step up

call has two steps

Call increment

Memory

0x40053b
<main-+8>

240
vl

0x400522
<step up+25>

\ (1) Push return

address on stack

0x7£df28

0x7£df20

O0x7£df18

trax Srdi 3rsi
0x7£df20 61l

3rsp 3rip (2) Jump to target
Ox7£d£f18 0x4004cd

40



Procedure call example (step 4) fun increment

Stack
1o/ 1oNg increment (long* p, long val) { Frames Memory
long x = *p;
long v = x + val; e o o
*P = Ys main
\ return x: 0x7 £A£28 QX4QO53k>
} <main+8>
step_up: 240
400509: subg $8, %rsp 0x71di20 1
40050d: movg $240, (%rép) Sstep_up e ede1s 0400522
400515: movg %rsp, 6r§1 <step up+25>
400518: movl $61, $%es1i _ —
40051d: callg 4004cd <increment> increment-{
400522: addgq (%rsp), 3%rax
400526: addg $8, %rsp
4 2a: t : :
00522 mihian ¥rax drdi 3rsi
increment: O0x7fd£f20 61
4004cd: movq (3rdi), 3Irax E
Xecute these o o 1~ 1
4004d0: addq S%rax, %rsi * 3| . cI'SP oL 1P
, , instructions
4004d3: movg %rsi, (%rdi) O0x7fdf18 0x4004d6
4004d6: retq




Procedure call example (step 4) fun increment

Stack
1o/ 1oNg increment (long* p, long val) { Frames Memory
long x = *p;
long y = x + Val; o o o
*P = Y main
\ return x: 0x7 £A£28 0X49053h>
' <main+8>
step up: 240
400509: subg $8, $rsp Ox7FDF20 1
40050d: movg $240, (%r§p) Step_up N 0x400522
400515: movg %rsp, 6r§1 <step up+25>
400518: movl $61, $%es1i _ —
40051d: callg 4004cd <increment> increment{
400522: addgq (%rsp), 3%rax
400526: addg $8, %rsp
40052a: t : :
2 aihadia Trax Trdi Frsil
increment: 240 0x7£d£20 61
4004cd: movqg (%rdi), %Srax 3 .
4004d0: addq %rax, %rsi SLSP crl1Pp
4004d3: movg %rsi, (%rdi) O0x7fdf18 0x4004d0
4004d6: retq




Procedure call example (step 4) fun increment

Stack
1o/ 1oNg increment (long* p, long val) { Frames Memory
long x = *p;
long vy = X + Val; o o o
*P = Y main
\ return x: 0x7 £A£28 0X49053k>
' <main+8>
step up: 240
400509: subg $8, $rsp Ox7FDF20 1
40050d: movg $240, (%r§p) Step_up N 0x400522
400515: movg %rsp, 6r§1 <step up+25>
400518: movl $61, $%es1i _ —
40051d: callg 4004cd <increment> increment{
400522: addgq (%rsp), 3%rax
400526: addg $8, %rsp
40052a: t : :
2 aihadia Trax Trdi Frsil
increment: 240 0x7£d£20 301
4004cd: movqg (%rdi), %rax 3 .
4004d0: addq %rax, %rsi SLSP crl1Pp
4004d3: movg %rsi, (%rdi) O0x7fdf18 0x4004d3
4004d6: retq




Procedure call example (step 4) fun increment

Stack
1o/ 1oNg increment (long* p, long val) { Frames Memory
long x = *p;
long y = x + Val; o o o
*P = Y main
\ return x: 0x7 £A£28 0X49053h>
' <main+8>
step up: 301
400509: subg $8, $rsp Ox7FDF20 1
40050d: movg $240, (%r§p) Step_up N 0x400522
400515: movg %rsp, 6r§1 <step up+25>
400518: movl $61, $%es1i _ —
40051d: callg 4004cd <increment> increment{
400522: addgq (%rsp), 3%rax
400526: addg $8, %rsp
40052a: t : :
2 aihadia Trax Trdi Frsil
increment: 240 O0x7£d4d£20 301
4004cd: movqg (%rdi), %rax 3 .
4004d0: addq %rax, %rsi SLSP crl1Pp
4004d3: movg %rsi, (%rdi) O0x7£fdf18 0x4004d6
4004d6: retq




Procedure call example (step 5a)

Return from increment

to step up
Stack

1o/10ng increment(long* p, long val) { Frames Memory

long x = *p;

long vy = x + val; e o o

*P = Y main
1 } return x: 057 A28 0X4QO53k>

<main+8>

step up: 301
400509: subg $8, $rsp 0x7£dz20 1
40050d: movg $240, (%rsp) step_up 05400522
400515: movg %rsp, %rdi Ox7£dtl1s <step up+25>
400518: movl $61, %esi —
40051d: callg 4004cd <increment> ret has two steps
400522: addg (%rsp), 3rax (1) pop return address from stack
400526: addg $8, 3%rsp (2) jump to return address
10052a: retq ¥rax $rdi 3rsi
increment: 240 0x7£d£20 301
4004cd: movg (%rdi), %rax .
4004d0: addg S%rax, Srsi SISP oL1p
4004d3: movg %rsi, (%rdi) Ekecute ret O0x7£df18 0x4004d6
4004d6: retq




Procedure call example (step 5b) eturn from increment

to step up
Stack
1o/10ng increment(long* p, long val) { Frames Memory
long x = *p;
long v = x + val; e o oo
*P = Ys main
\ return x; 0x7 £d£28 0X49053h>
} <main+8>
step up: 301 *o
400509: subg $8, $rsp Ox7FDF20 v ISP
40050d: movg $240, (%rsp) PR .o | 0%x400522 | (1)pop return
o o o ' X
400515: movg 3%rsp, 3%rdi | <step up+25> | address from
400518: movl $61, %esi (2)jump tojreturn address B ctack
40051d: callg 4004cd <increment> ret has two steps
400522: addg (%rsp), %rax
400526: addg $8, %rsp
40052a: retq o o : o :
srax srdi 3rsil
increment: 240 0x7£d£20 301
4004cd: movg (%rdi), %rax o .
4004d0: addg %rax, %rsi SISP cr 1P
4004d3: movg %rsi, (%rdi) Ox7£d£20 0x400522
4004d6: retq




Procedure call example (step 5)

long step up() {
long vl = 240;
long v2 = increment(&vl, 61);
return vl+v2;

}

step up:

400509: subg $8, %rsp

40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi

400518: movl S$S61, %esi

40051d: callg 4004cd <increment>

Prepare step up

_1400522: addq (srsp), zrax * Execute this instruction

400526: addg $8, %rsp
40052a: retqg

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retq

result
Stack
Frames Memory
main
0x7£df2g| 0X40053b
<main-+8>
O0x7£df20 301
tep up v
S
0T Q18 0x400522
$rax $rdi $rsi

240 0x7£df20 301

Irsp Irip

Ox7£d£20 0x400526




Procedure call example (step 5)

long step up() {
long vl = 240;
long v2 = increment(&vl, 61);
return vl+v2;

}

step up:

400509: subg $8, %rsp

40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi

400518: movl S$S61, %esi

40051d: callg 4004cd <increment>

400522: addq (%rsp), srax

400526: addg $8, %rsp
40052a: retqg

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retq

Prepare step up

result
Stack
Frames Memory
maln
0x7£df2g| 0¥40053b
<main-+8>
0x7£df20 301
step up v
— 0% TEA 18 0x400522
3rax $rdi $rsi
add 541 Ox7£d£20 301
Irsp Irip
Ox7£d£20 0x400526




Procedure call example (step 7)

long step up() {
long vl = 240;
long v2 = increment(&vl, 61);
return v1+v2;

}

step up:

400509: subg $8, %rsp

40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi

400518: movl S$S61, %esi

40051d: callg 4004cd <increment>

Deallocate space
for local vars

400522: addg (%rsp), %rax
400526: addg $8, 3%rsp *Executethis instruction

40052a: retqg

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retq

Stack
Frames Memory
main
0x7£df2g| 0X40053b
<main-+8>
Ox7£d£20 301
step up v
— 0% TEA 18 0x400522
$rax $rdi $rsi
541 O0x7£d£f20 301
Irsp Irip
Ox7£d£20 0x400526




Procedure call example (step 7)

long step up() {
long vl = 240;
long v2 = increment(&vl, 61);
return v1+v2;

}

step up:

400509: subg $8, %rsp

40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi

400518: movl S$S61, %esi

40051d: callg 4004cd <increment>
400522: addg (%rsp), 3rax
400526: addg $8, %rsp

40052a: retqg

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retq

Deallocate space
for local vars

Stack
Frames Memory
main
ox7£df2g| 0X40053b
<main-+8>
Ox7£d£20 301
Ox7£fdf1l8 0x400522
$rax $rdi $rsi

541 0x7£df20 301

Irsp Irip

higher

~ddress 0x400526

Ox7£df28

* 3rSp

shorten stack



Procedure call example (step s)

long step up() {
long vl = 240;
long v2 = increment(&vl, 61);
return v1+v2;

}

step up:

400509: subg $8, %rsp

40050d: movg $240, (%rsp)
400515: movg %rsp, %rdi

400518: movl S$S61, %esi

40051d: callg 4004cd <increment>
400522: addgq (%rsp), 3%rax
400526: addg $8, %rsp

40052a: retq

increment:

4004cd: movg (%rdi), %rax
4004d0: addg %rax, %rsi
4004d3: movg %rsi, (%rdi)
4004d6: retq

Return from step up

tomain
Stack
Frames Memory
main-[ * *°
ox7£df2g| 0X40053b
<main-+8>
Ox7£d£20 301
0T Q18 0x400522
$rax $rdi $rsi

541 0x7£df20 301

Irsp Irip

Ox7£d£30 0x40053b

* 3rSp

shorten stack
again



Implementing procedures

Have we now seen
how this is done?

1. How does a caller pass arguments to a procedure?
2. How does a caller receive a return value from a procedure?

3. How does a procedure know where to return
(what code to execute next when done)?

4. Where does a procedure store local variables?

5. How do procedures share limited registers and memory?



Register saving conventions yoo (..) {

yoo calls who: e
who () ;
Caller Callee ° o o

Will register contents still be there after a procedure call?

yOO: who:

movq $12345 addg %rdi,
2

call who ® o o

addqg srax ret

ret

Conventions:

Caller Save
Callee Save



X86-64 register conventions

o2 rax Returnvalue — Caller saved
2 rbx Callee saved
crcox Argument #4 — Caller saved
o rdx Argument #3 — Caller saved

orgsi Argument #2 — Caller saved

e di Argument #1 — Caller saved
3rsSp Stack pointer

Srbp Callee saved

-9  Argument #5 — Caller saved
o2~9  Argument #6 — Caller saved
2110 Caller saved
211 Caller Saved
212 Callee saved
2113 Callee saved
214 Callee saved

215 Callee saved



Callee-save example (step 0) main called step_by (240)

Similar function, but now takes an arg for the local variable Stack
Memor
long step by(long x) { Frames Y
long vl = x;
long v2 = increment(&vl, 61); e o o
return x + v2; maln
}

O0x7£fdf28 0x40053Db

step by: 0x7fdf20

400504: pushg %rbx

. O0x7£fdf18
400506: movg %rdi, S%Srbx
400509: subg $16, %rsp 0x7£df10
40050d: movg %rdi, (%rsp) 0x7£df038
400515: movg %rsp, %rdi o b
400518: movl $61, %esi Important value placed Ea
40051d: callg 4004cd <increment> there by main, callee saved_> 3
400522: addg %rbx, %rax o rax o vdi o rai

400525: addg $16, %rsp
400529: popg %rbx 240

40052b: retqg

Irsp Irip

caller saved: $rax, %rdi, $rsi Ox7£fd£28 0x400504

callee saved: $rbx



Callee-save example (step 1)

Save register 3rbx

Stack v
emor
long step by(long x) { Frames Y
long vl = x;
long v2 = increment(&vl, 61); | e o o
return x + v2; main
}
0x7£fdf28 0x40053b
step_by: step_by+:0x7fdf20 3
400504: pushg 3rbx 0x7£d£18
400506: movqg %rdi, 3rbx  gye thd value of 3rbx so 07 £dE10
400509: subg 316, 3%rsp we can Use that register, too
40050d: movg %rdi, (%rsp) 0x7£df08
400515: movg %rsp, %rdi N
400518: movl S$61, %esi oL DX
40051d: callg 4004cd <increment> 3
400522: addgq %rbx, 3%rax o 1 o v+d3 S
400525: addg $16, %rsp ctax ke °t51
400529: popg $%$rbx $—— Once this function is done, 240
40052b: retq restore saved value 3rsp Srip
caller saved: $rax, %rdi, $rsi Ox7£d£f20 0x400506

callee saved: 3rbx




Callee-save example (step 2)

Copy argument x to 3rbx
for continued use after

calling increment.

Stack I
emor
long step by(long x) { Frames Y
long vl = x;
long v2 = increment(&vl, 61); | e o o
return x + v2; malll
}
0x7£df28 0x40053Db
step_by: step_by+:0x7fdf20 3
400504: pushg %rbx 0x7£d£18
400506: movqg %3%rdi, 3rbx . 07 £AE10
. Q X
200509' subq o$16f °rfp Need|to save the value 0% 7 £A£08
0050d: movg %rdi, ( 6r§p) x to yse later, after the
400515: movg =2rsp, %rdi 1td - o +b
400518: movl $61, %esi calltg increment oL DX
40051d: callg 4004cd <increment> 240
400522: addg %rbx, %rax o 1 o v+d3 S
400525: addg $16, %rsp prax e °rSd
400529: popg %rbx 240
40052b: retq S rsp Srip
caller saved: $rax, %rdi, $rsi O0x7£d£f20 0x400509

callee saved: $rbx




Callee-save example (step 3)

long step by(long x) {

long vl = x;
long v2 = increment(&vl, 61);
return x + v2;

'

step by:

400504: pushg %rbx

400506: movqg %rdi, %rbx

400509: subg $16, %rsp

40050d: movq 3%rdi, (%rsp)

400515: movg %rsp, %rdi

400518: movl S$61, %esi

40051d: callg 4004cd <increment>
400522: addg %rbx, %rax

400525: addg $16, %rsp

400529: popg %rbx

40052b: retqg

caller saved: $rax, %rdi, %rsi

callee saved: $rbx

Set up stack frame

Initialize v1
Stack
Frames Memory
main R
O0x7£df28 0x40053Db
O0x7£df20 3
step by 0x7fdf18 for alighment
Ox7£df10 240
O0x7£df08
$rbx
240
$rax $rdi $rsi
240
3rsp 3rip
Ox7£df10 0x400515

Convention:
at call, %rsp
must be a
multiple of 16



Callee-save example (step 4)

long step by(long x) {
long vl = x;
long v2 = increment(&vl, 61);
return x + v2;
}
step by:
400504: pushg %rbx
400506: movqg %rdi, %rbx
400509: subg $16, %rsp
40050d: movg %rdi, (%rsp)
400515: movqg %rsp, %rdi
400518: movl S61, %esi
40051d: callg 4004cd <increment>
400522: addg %rbx, %rax
400525: addg $16, %rsp
400529: popg %rbx
40052b: retqg

caller saved: $rax, %rdi, %rsi

callee saved: $rbx

Set up arguments

Stack
Frames Memory
malin S
0x7£fdf28 0x40053Db
0x7£df20 3
step by 0x7fdf18 for alighment
0x7£fdf10 240
0x7£df08
3rbx
240
3rax 3rdil 3rsi
Ox7£d4d£f10 61
3rsp 3rip
O0x7£df10 0x40051d




Callee-save example (steps)

long step by(long x) {
long vl = x;
long v2 = increment(&vl, 61);
return x + v2;
}
step by:
400504: pushg %rbx
400506: movqg %rdi, %rbx
400509: subg $16, %rsp
40050d: movg %rdi, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$61, %esi
40051d: callq 4004cd <increment>
400522: addg %rbx, %rax
400525: addg $16, %rsp
400529: popg %rbx
40052b: retqg
caller saved: $rax, %rdi, %rsi

callee saved: $rbx

Call, execute, and return

from increment

Stack
Frames

main

0x7fdf28
0x7£fdf20

step_by - 0x7fdf18
O0x7£d£f10

0x7£fdf08

Srax Srdi

Memory

0x40053b

3

for alighment

301

0x400522

Srbx

240

$rsi

240 0x7£df10 301

XSSP

3rip

0x7£df10

0x400522




Callee-save example (step6)

long step by(long x) {
long vl = x;
long v2 = increment(&vl, 61);
return x + v2;
}
step by:
400504: pushg %rbx
400506: movqg %rdi, %rbx
400509: subg $16, %rsp
40050d: movg %rdi, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$61, %esi
40051d: callg 4004cd <increment>
400522: addq %rbx, %rax «—
400525: addg $16, %rsp
400529: popg %rbx
40052b: retqg
caller saved: $rax, %rdi, %rsi

callee saved: $rbx

Prepare return value

Stack
Frames Memory
main e
O0x7£df28 0x40053Db
O0x7£df20 3
step by 0x7fdf18 for alighment
Ox7£df10 301
O0x7£df08 0x400522
| $rbx
We know increment
restored $Srbx 240
$rax $rdi $rsi
480 Ox7£d£f10 301
Irsp Irip
Ox7£d£f10 0x400525




Callee-save example (step7)

long step by(long x) {
long vl = x;
long v2 = increment(&vl, 61);
return x + v2;
}
step by:
400504: pushg %rbx
400506: movqg %rdi, %rbx
400509: subg $16, %rsp
40050d: movg %rdi, (%rsp)
400515: movg %rsp, %rdi
400518: movl S$61, %esi
40051d: callg 4004cd <increment>
400522: addg %rbx, %rax «—
400525: addg $16, %rsp
400529: popg %rbx
40052b: retqg
caller saved: $rax, %rdi, %rsi

callee saved: $rbx

Clean up stack frame

Stack
Frames Memory
main e
O0x7£fd£28 0x40053b
step_by-[ 0x7£fdf20 3
0x7fdf18 for alignment
O0x7£df10 301
0x7£d£08 0x400522
$rbx
Shrink stack 240
3rax $rdi $rsi
480 Ox7£d£f10 301
Irsp Irip
Ox7£d4d£20 0x400529




Callee-save example (step g) Restore register $xbx

Ready to return

Stack v
emor
long step by(long x) { Frames y
long vl = x;
long v2 = increment(&vl, 61); | e o o
return x + v2; malin

}

O0x7£fdf28 0x40053b

step by: 0x7£d£20 3

400504: pushq Srbx Ox7fdf18 for alignment

400506: movqg %rdi, %rbx

400509: subg $16, %rsp 0x7£df10 301
40050d: movg %rdi, (%rsp) 0x7£df08 0x400522
400515: movg %rsp, %rdi .
400518: movl S$61, %esi srbx
40051d: callg 4004cd <increment> 3
400522: addg %rbx, 3rax . . , S ,
400525: addg $16, %rsp Restore 12 rbx olax srdl ofSt
400529: popq Srbx «—— .| 480 O0x7£df10 301
40052b: retq Srsp 3rip

caller saved: $rax, %rdi, $rsi Ox7£fd£28 0x40052b

callee saved: $rbx



Recursion example: code

long pcount(unsigned long x) {
if (x == 0) {
return O0;
} else {
return ;
'
}

pcount:
4005dd: movl $0, %$eax
4005e2: testq %rdi, %rdi °
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

base case/
condition

recursive
case




Recursion Example: pcount (2)

long pcount(unsigned long x) {
if (x == 0) {
return O0;
} else {
return

}

pcount:
4005dd: movl $0, %$eax

4005e2: testg %rdi, %rdi
4005e5: je
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005fl: callg pcount
4005f6: addg %rbx, 3%rax
4005f9: popg 3%rbx

.L6:

4005fa: rep

4005fb: retqg

4005fa <.L6>

Stack
Frames
Memory
main ’I: 0x7£fdf38| 0x4006ed
O0x7£d£f30
O0x7£df28
0x7£d£f20
O0x7£df18
O0x7£df10
O0x7£df08
¥rax $rdi $rbx
? 2 42
Frsp Srip
Ox7£d£38 0x4005dd




Recursion Example: pcount (2)

long pcount(unsigned long x) {
if (x == 0) {
return O0;

} else {
return

}

pcount:
4005dd: movl S0, %eax

4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx

4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005fl: callg pcount
4005f6: addg %rbx, 3%rax
4005f9: popg 3%rbx

.L6:

4005fa: rep

4005fb: retqg

Stack
Frames
Memory
main'[0x7fdf38 0x4006ed
pc(z){ 0x7£d£30
O0x7£df28
0x7£d£f20
O0x7£df18
O0x7£fdf10
O0x7£df08
¥rax $rdi $rbx
0 2 42
3rsp Srip
O0x7fdf38 0x4005e7




Recursion Example: pcount (2)

long pcount(unsigned long x) {
if (x == 0) {
return 0;
} else {
return ;
}
}

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq 3%rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main'[0x7fdf38 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28
0x7£d£f20
O0x7£df18
O0x7£fdf10
O0x7£df08
¥rax $rdi $rbx
0 2 2
Frsp Srip
O0x7£d£30 0x4005eb




Recursion Example: pcount (2)

long pcount(unsigned long x) {
if (x == 0) {
return 0;
} else {
return ;
}
}

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main{0x7fdf38 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28
0x7£d£f20
O0x7£df18
O0x7£df10
O0x7£df08
¥rax $rdi $rbx
0 1 0
3rsp Srip
0x7£d£f30 0x4005f1




Recursion Example: pcount(2) - pcount (1)

long pcount(unsigned long x) {

if (x == 0) {
return 0;
} else {
return ;
}
}

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callgq pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main{0x7fdf38 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28 0x4005f6
0x7£d£f20
O0x7£df18
O0x7£fdf10
O0x7£df08
¥rax $rdi $rbx
0 1 0
3rsp Srip
Ox7£d£28 0x4005dd




Recursion Example: pcount(2) - pcount (1)

1¢

long pcount(unsigned long x) {
if (x == 0) {
return O0;

} else {
return
H,

pCOUNt:
4005dd: movl S0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main'[0x7fdf38 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28 0x4005f6
0x7£d£f20
O0x7£df18
O0x7£df10
O0x7£df08
¥rax $rdi $rbx
0 1 0
3rsp Srip
O0x7£fdf28 0x4005e7




Recursion Example: pcount(2) - pcount (1)

1¢

long pcount(unsigned long x) {

if (x == 0) {
return O0;
} else {
return
H,
pCOUNt:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq 3%rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main ’I: 0x7fdf38| 0x4006ed
pc(z){ 0x7fd£f30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l)
Ox7f£df1l8
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
0 1 1
Srsp Srip
Ox7£d£f20 0x4005eb




Recursion Example: pcount(2) - pcount (1)

1¢

long pcount(unsigned long x) {

1f

== 0)

return O0O;

{

} else {
return
'
My

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main ’I: 0x7£fd£f38| 0x4006ed
pc(z){ 0x7fd£f30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l)
Ox7f£df1l8
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
0 0 1
Srsp Srip
Ox7£d£20 0x4005f1




Recursion Example: pcount(2) - pcount(l) - pcount(0)

1¢

long pcount(unsigned long x) {

if (x == 0) {
return O0O;
} else {
return
'
My

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callgq pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main '[ 0x7fdf38| 0x4006ed
pc(z){ 0x7fd£30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l) ‘[
O0x7£df18 0x4005f6
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
0 0 1
Srsp Srip
Ox7£df18 0x4005dd




Recursion Example: pcount(2) - pcount(l) - pcount(0)

1¢

AN NnoeniintE fiincionod 1l anea <2\ J

long pcount(unsigned long x) {
if (x == 0) {

return O0;

} else {
return
}
'

4005dd: movl S0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main '[ 0x7fdf38| 0x4006ed
pc(z){ 0x7fd£30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l)
0x7£df18 0x4005f6
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
0 0 1
Irsp 3rip
Ox7£df18 0x4005fa




Recursion Example: pcount(2) - pcount(l) - pcount(0)

1¢

AN NnoeniintE fiincionod 1l anea <2\ J

long pcount(unsigned long x) {

if (x == 0) {
return 0;
} else {
return
}
'
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retq

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7fd£30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l) ‘[
0x7£df18 0x4005f6
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
0 0 1
Irsp 3rip
Ox7£d£f20 0x4005f6




Recursion Example: pcount(2) - pcount(l) - pcount(0)

1¢

long pcount(unsigned long x) {

if (x == 0) {
return O0O;
} else {
return
'
My

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retq

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7fd£30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l) ‘[
0x7£df18 0x4005f6
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
0 0 1
Irsp 3rip
Ox7£d£f20 0x4005f6




Recursion Example: pcount(2) - pcount (1)

1¢

long pcount(unsigned long x) {

if (x == 0) {
return O0O;
} else {
return
'
My

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addq 3%rbx, 3srax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7fd£30 42
Ox7£df28 0x4005f6
Ox7£d£f20 0
pc(1l) ‘[
0x7£df18 0x4005f6
Ox7£d£f10
Ox7£df08
$rax $rdi $rbx
1 0 1
3rsp Irip
Ox7£d£20 0x4005£9




Recursion Example: pcount(2) - pcount (1)

1¢

long pcount(unsigned long x) {

if (x == 0) {
return O0O;
} else {
return
'
My

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28 0x4005f6
O0x7£df20 0
0x7£df18 0x4005f6
O0x7£fdf10
O0x7£df08
¥rax $rdi $rbx
1 0 0
Irsp 3rip
Ox7£d£28 0x4005fa




Recursion Example: pcount(2) - pcount (1)

1¢

long pcount(unsigned long x) {

if (x == 0) {
return O0O;
} else {
return
'
My

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retq

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28 0x4005f6
O0x7£df20 0
0x7fdf18 0x4005f6
O0x7£fdf10
O0x7£df08
$rax $rdi $rbx
1 0 0
Irsp 3rip
Ox7£d4d£30 0x4005f£6




Recursion Example: pcount(2) - pcount (1)

long pcount(unsigned long x) {

if (x == 0) {
return O;
} else {
return ;
}
'

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retq

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28 0x4005f6
O0x7£df20 0
0x7fdf18 0x4005f6
O0x7£fdf10
O0x7£df08
$rax $rdi $rbx
1 0 0
Irsp 3rip
Ox7£d4d£30 0x4005f£6




Recursion Example: pcount (2)

long pcount(unsigned long x) {

if (x == 0) {
return O;
} else {
return
}
'

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addq 3%rbx, 3srax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
pc(z){ 0x7£d£30 42
O0x7£df28 0x4005f6
O0x7£df20 0
0x7fdf18 0x4005f6
O0x7£fdf10
O0x7£df08
$rax $rdi $rbx
1 0 0
Irsp 3rip
0x7£d£30 0x4005£9




Recursion Example: pcount (2)

long pcount(unsigned long x) {

if (x == 0) {
return O;
} else {
return
}
'

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3rbx
.L6:
4005fa: rep
4005fb: retqg

Stack
Frames
Memory
main ‘I: 0x7fdf38| 0x4006ed
0x7£d£30 42
O0x7£df28 0x4005f6
O0x7£df20 0
0x7£df18 0x4005f6
O0x7£fdf10
O0x7£df08
¥rax $rdi $rbx
1 0 42
Irsp 3rip
O0x7£d£38 0x4005£9




Recursion Example: pcount (2)

long pcount(unsigned long x) {

if (x == 0) {
return O;
} else {
return
}
'

pcount:
4005dd: movl $0, %$eax
4005e2: testqg %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushg %rbx
4005e8: movg %rdi, %rbx
4005eb: andl S1, %ebx
4005ee: shrg %rdi
4005f1: callg pcount
4005f6: addg %rbx, %rax
4005f9: popg 3%rbx
.L6:
4005fa: rep
4005fb: retq

Stack
Frames Memory
main €
O0x7£fd£f38 0x4006ed
0x7fd£30 42
O0x7£df28 0x4005f6
O0x7£df20 0
0x7£fdf18 0x4005f6
O0x7£df10
O0x7£df08
¥rax $rdi Srbx
1 0 42
Irsp 3rip
O0x7£d4d£40 0x4006ed




Stack storage example

(1)

long int call proc()

{

long x1 = 1;
int X2 = 23
short x3 = 3;
char x4 = 4;
proc(xl, &x1l, x2, &x2,

X3, &x3, x4, &x4);
return (x1+x2)*(x3-

xX4);

Return address to caller of ¢

all proc

call proc:
subg $32,%rsp
movg $1,16(%rsp) #
movl $2,24(%rsp) #
movw $3,28(%rsp) #
movb $4,31(%rsp) #

X1
X2
X3
X4

«3rsp




Stack storage example
(2) Allocate local vars

long int call proc()

{
long x1 = 1;
int x2 = 2;
short x3 = 3;
char x4 = 4;

4

proc(x1l, &x1, x2, &x2,
X3, &x3, x4, &x4);

return (x1+x2)*(x3-x4);

call proc:
subg $32,%rsp
movqg $1,16(%rsp) #
movl $2,24(%rsp) #
movw $3,28(%rsp) #
movb $4,31(%rsp) #

x1
X2
X3
x4




Stack storage example
(3) setup args to proc

long int call proc()

{
long x1 = 1;
int X2 = 2;
short x3 = 3;
char x4 = 4;

proc(xl, &x1, x2, &x2,
x3, &x3, x4, &x4);
return (x1+x2)*(x3-

xX4);

Return address to caller of ¢

all proc

optional

call proc:

leaq
leaq
leaq
movq
movl
leaq
movl
movl

movq
call

24 (%rsp), %rcx # &x2
16 (%rsp),%rsi # &xl1
31(%rsp),%rax # &x4
$rax,8(%rsp) # ...

S4, (%rsp) # 4
28 (%rsp),%r9 # &x3
$3,%r8d # 3
S$2, %edx # 2
S1,%rdi # 1
proc

Arguments passed in (in order):

%rdi, %rsi, %rdx, %rcx, %r8, %r9



Stack storage example
(4) after call to proc I:I

long int call proc() call proc:
{ long x1 = 1; movswl 28 (%rsp),%eax # X3
int X2 = 23 movsbl 31(%rsp),%edx # x4
short x3 = 3; subl sedx, seax # x3-x4
char x4 = 4: cltg # sign-extend %eax->%rax
proc(xl, &xl, x2, &x2, movslg 24 (%rsp), srdx # x2
x3, &x3, x4, &x4); addq 16 (%rsp),%rdx # x1+x2
return (x1+x2)*(x3-x4); imulg %rdx,%rax # *
} addqg $32,3rsp
ret

Return address to caller of call proc




Stack storage example
(5) deallocate local vars

{

long int call proc()

long x1 = 1;
int X2 = 23
short x3 = 3;
char x4 = 4;
proc(xl, &x1l, x2, &x2,

X3, &x3, x4, &x4);

return

(X1+x2)*(x3-x4);

call proc:

movswl 28 (3rsp),%eax
movsbl 31(%rsp),%edx
subl %edx, $eax
cltqg

movslg 24 (%rsp),3rdx
addq 16 (3rsp),3rdx
imulg %rdx,%rax
addq $32,%rsp

ret




Procedure Summary

call, ret, push, pop
Stack discipline fits procedure call / return.*

Caller

If P calls Q: Q (and calls by Q) returns before P Erame
Conventions support arbitrary function calls. Extra Arguments

Register-save conventions. to callee

Stack frame saves extra args or local variables. Result returned in $rax Return Address

Saved Registers

Callee "

Local Variables
Frame
srs N
°rs ack pointer 3r allee save ©
P B functions allowed
changing $Srsp



