
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

x86: Procedures 
and the Call Stack

The call stack discipline

x86 procedure call and return instructions

x86 calling conventions

x86 register-saving conventions

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

2

x86: Procedures and the Call Stack

1. Motivation

a. (video 1) What we have seen so far

b. (video 1) Why we can’t implement procedure calls with jumps alone

2. (video 1) High-level call stack example

3. Procedure control flow instructions: call and ret

4. Procedure call example (in depth!) on whiteboard

5. Caller vs/callee example

6. (Covered in lab, video) Recursion example

Outline

Recent research chat on Slack with

PhD student collaborator

Yes, the call stack comes up in
large-scale software

engineering/research!

3

Does understanding the call stack really matter?

Why procedures?
Why functions? Why methods?

4

int contains_char(char* haystack, char needle) {
 while (*haystack != '\0') {
 if (*haystack == needle) return 1;
 haystack++;
 }
 return 0;
}

Answer: procedural abstraction

Implementing procedures

1. How does a caller pass arguments to a procedure?

2. How does a caller receive a return value from a procedure?

5

✓

✓

Have we already seen
how this is done?

✓?

??

??

3. How does a procedure know where to return 
(what code to execute next when done)?

4. Where does a procedure store local variables? 

5. How do procedures share limited registers and memory?

Procedure call/return: Jump?

6

yoo:

 jmp who
back:

who:

 jmp back

But what if we want to call a function from multiple places in the code?

yoo(…) {
• • •
who();
• • •

}

who(…) {
• • •

• • •

• • •
}

1
2

5 3

4

yoo

who

Call Chain

ru(…) {
• • •

}

But what if we want to call a function from multiple places in the code?

Broken: needs to track context.

Procedure call/return: Jump? Broken!

7

yoo(…) {
• • •
who();
• • •

}

who(…) {
• • •
ru();
• • •
ru();
• • •

}

ru(…) {
• • •

}

yoo

who

ru

Call Chain

ru

who:

 jmp ru
back2:

 jmp ru
back2:

ru:

 jmp back2

1
2

6
5 3,7

89

4

Implementing procedures

1. How does a caller pass arguments to a procedure?

2. How does a caller receive a return value from a procedure?

3. How does a procedure know where to return 
(what code to execute next when done)?

4. Where does a procedure store local variables?

1. How do procedures share limited registers and memory?
8

requires separate storage per call!

(not just per procedure)

✓

✓

✓?

??

??

Have we already seen
how this is done?

Addr Perm Contents Managed by Initialized

2N-1 Stack RW Procedure context Compiler Run-time

Heap RW Dynamic

data structures

Programmer,
malloc/free, new/

GC
Run-time

Statics RW Global variables/
static data structures

Compiler/
Assembler/Linker Startup

Literals R String literals Compiler/
Assembler/Linker Startup

Text X Instructions Compiler/
Assembler/Linker Startup

0

Memory Layout

9

reminder

Call stack tracks context

10

Example

Call Chain

Procedure amI is recursive 
(calls itself)

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
•
amI();
•
amI();
•

}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

yoo

who

amI

amI

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

Call stack tracks context

11

yoo

who

amI

amI

amI

amI

yoo
%rsp

Stack

yoo

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

Call stack tracks context

12

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

Call stack tracks context

13

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

Call stack tracks context

14

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

amI

amI(…)
{
•

 if(…){
amI()

 }
•

}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

Call stack tracks context

15

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
•

 if(…){
amI()

 }
•

}

amI(…)
{
•

 if(…){
amI()

 }
•

}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

Call stack tracks context

16

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
•

 if(…){
amI()

 }
•

}

amI(…)
{
•

 if(…){
amI()

 }
•

}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

Call stack tracks context

17

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
•

 if(…){
amI()

 }
•

}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

amI

Call stack tracks context

18

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
•

 if(…){
 amI()

 }
•

}

amI

amI

Call stack tracks context

19

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
•
amI();
•
amI();
•

} amI

amI

amI

Call stack tracks context

20

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
•
amI();
•
amI();
•

}

amI(…)
{
•

 if(){
amI()

 }
•

}

Call stack tracks context

21

yoo

who

amI

amI

amI

amI

yoo

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
•
amI();
•
amI();
•

}

amI(…)
{
•

 if(){
amI()

 }
•

} %rsp

Call stack tracks context

22

yoo

who

amI

amI

amI

amI

yoo

%rsp

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
•
amI();
•
amI();
•

}

Call stack tracks context

23

yoo

who

amI

amI

amI

amI

yoo
%rsp

Stack

yoo

amI

who

yoo(…)
{
 •
 •
 who();
 •
 •
}

24

25

26

The call stack supports procedures

27

Return Address

where to continue on return

Saved Registers

Local Variables

Saved Registers

Local Variables

Extra Arguments

to callee

Caller

Frame

Stack pointer %rsp

Callee

Frame

. . .

. . .

stack grows

toward

lower addresses

higher

addresses

Procedure code manages
stack frames explicitly.

• Setup: allocate space 

at start of procedure.

• Cleanup: deallocate space

before return.

Stack frame: section of stack
used by one procedure call to
store context while running.

Base pointer %rbp

Procedure call: callq target

1. Push return address on stack

2. Jump to target

Procedure control flow instructions

28

	 Return address: Address of instruction after call.

400544: callq 400550 <mult2>
400549: movq %rax,(%rbx)

Procedure return: retq
1. Pop return address from stack

2. Jump to return address

???

•
•
•0x7fdf20

0x7fdf28

0x7fdf30

0x7fdf18

Memory

0x7fdf20

%rsp

0x400544

%rip

Before callq

0000000000400540 <multstore>:
 •
 •
 400544: callq 400550 <mult2>
 400549: mov %rax,(%rbx)
 •
 •

0000000000400550 <mult2>:
 400550: mov %rdi,%rax
 •
 •
 400557: retq

29

callq target

1. Push return address on stack

2. Jump to target

%rsp

Call example

%

Call example

0000000000400540 <multstore>:
 •
 •
 400544: callq 400550 <mult2>
 400549: mov %rax,(%rbx)
 •
 •

0000000000400550 <mult2>:
 400550: mov %rdi,%rax
 •
 •
 400557: retq

%

30

???

•
•
•0x7fdf20

0x7fdf28

0x7fdf30

0x7fdf18

Memory

0x7fdf20

%rsp

0x400544

%rip

0x7fdf18

%rsp

0x400550

%rip

After callq

Before callq

0x400549

•
•
•0x7fdf20

0x7fdf28

0x7fdf30

0x7fdf18

Memory

0x7fdf18 0x400550

%rsp

%rsp
callq target

1. Push return address on stack

2. Jump to target

0000000000400540 <multstore>:
 •
 •
 400544: callq 400550 <mult2>
 400549: mov %rax,(%rbx)
 •
 •

Return example

0000000000400550 <mult2>:
 400550: mov %rdi,%rax
 •
 •
 400557: retq

31

retq
1. Pop return address from stack

2. Jump to return address

0x7fdf18

%rsp

0x400550

%rip

Before retq

0x400549

•
•
•0x7fdf20

0x7fdf28

0x7fdf30

0x7fdf18

Memory

0x7fdf18 0x400557

%rsp

%

0000000000400540 <multstore>:
 •
 •
 400544: callq 400550 <mult2>
 400549: mov %rax,(%rbx)
 •
 •

0000000000400550 <mult2>:
 400550: mov %rdi,%rax
 •
 •
 400557: retq

32

0x7fdf20

%rsp

0x400549

%rip

After retq

0x400549

•
•
•0x7fdf20

0x7fdf28

0x7fdf30

0x7fdf18

Memory

0x7fdf20 400549

0x7fdf18

%rsp

0x400550

%rip

Before retq

0x400549

•
•
•0x7fdf20

0x7fdf28

0x7fdf30

0x7fdf18

Memory

0x7fdf18 0x400557

%rsp

%rsp

Return example

retq
1. Pop return address from stack

2. Jump to return address

Procedure data flow conventions

33

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

Diane’s

Silk

Dress

Costs

$8 9

First 6 arguments: passed in registers

Return value: passed in %rax

Arg 1

Arg 6
Arg 7

• • •

Arg 8

Arg n

• • •

Return Address

High 
Addresses

Low 
Addresses

Remaining arguments:

passed on stack (in memory)

Arg 2

Arg 3

Arg 4

Arg 5

Recall:

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Procedure call / stack frame example

34

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

Passes address of local variable (in stack).

Uses memory through pointer.

ex

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Procedure call example (step 0)

35

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

0x7fdf28
%rsp

0x400509
%rip

%rsi%rax %rdi

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20

0x7fdf18

Stack

Frames

main called step_up

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

main

return
address

somewhere in
main
%rsp

red line

shows

%rip

ex

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Procedure call example (step 1)

36

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Allocate space

for local vars

0x7fdf20
%rsp

0x400515
%rip

%rsi%rax %rdi

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 240
v1

0x7fdf18

Stack

Frames

step_up

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

main local variable
v1 stored in
stack address
%rsp

ex

Procedure call example (step 2)

37

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Set up args for call  
to increment

0x7fdf20
%rsp

0x40051d
%rip

%rsi

%rdi%rax

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 240
v1

0x7fdf18

Stack

Frames

step_up

main

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

Place args in registers before call

Move the two args to
the right registers

%rsp

ex

Procedure call example (step 2)

38

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Set up args for call  
to increment

0x7fdf20
%rsp

0x40051d
%rip

61

%rsi

0x7fdf20

%rdi%rax

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 240
v1

0x7fdf18

Stack

Frames

step_up

main

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

1st arg for

increment

2nd arg for

increment

Place args in registers before call

%rsp

ex

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

39

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 240
v1

0x7fdf18

0x7fdf18
%rsp

%rip

61

%rsi

0x7fdf20

%rdi%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

step_up

main

call has two steps
(1) Push return address on stack
(2) Jump to target

Procedure call example (step 3) Call increment

Fill in

Fill in

%rsp

ex

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Procedure call example (step 3)

40

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 240
v1

0x7fdf18

Call increment

0x7fdf18
%rsp

%rip

61

%rsi

0x7fdf20

%rdi%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

step_up

main

call has two steps (1) Push return
address on stack

0x400522
<step_up+25>

400522:

(2) Jump to target

increment

increment

0x4004cd

4004cd

%rsp

ex

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Procedure call example (step 4)

41

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 240
v1

0x7fdf18
0x400522

<step_up+25>

Run increment

0x7fdf18
%rsp

0x4004d6
%rip

61

%rsi

0x7fdf20

%rdi

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

increment

step_up

main

Execute these

3 instructions

%rsp

ex

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Procedure call example (step 4)

42

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

Ox7FDF20 240
v1

0x7fdf18
0x400522

<step_up+25>

Run increment

0x7fdf18
%rsp

0x4004d0
%rip

61

%rsi

0x7fdf20

%rdi

240

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

increment

step_up

main

%rsp

ex

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Procedure call example (step 4)

43

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

Ox7FDF20 240
v1

0x7fdf18
0x400522

<step_up+25>

Run increment

0x7fdf18
%rsp

0x4004d3
%rip

301

%rsi

0x7fdf20

%rdi

240

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

increment

step_up

main

%rsp

ex

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Procedure call example (step 4)

44

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

Ox7FDF20 301
v1

0x7fdf18
0x400522

<step_up+25>

Run increment

0x7fdf18
%rsp

0x4004d6
%rip

301

%rsi

0x7fdf20

%rdi

240

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

increment

step_up

main

%rsp

ex

Procedure call example (step 5a)

45

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

%rsp %rip

301

%rsi

0x7fdf20

%rdi

240

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

Return from increment
to step_up

0x7fdf18 0x4004d6

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

step_up

main

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

Execute ret

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 301
v1

0x7fdf18
0x400522

<step_up+25>

ret has two steps

(1) pop return address from stack

(2) jump to return address

ex

Procedure call example (step 5b)

46

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7FDF20 301
v1

0x7fdf18
0x400522

<step_up+25>

%rsp %rip

301

%rsi

0x7fdf20

%rdi

240

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

Return from increment
to step_up

0x7fdf20 0x400522

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

step_up

main

long increment(long* p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

%rsp

ret has two steps

(1) pop return
address from
stack
(2) jump to return address

ex

Procedure call example (step 6)

47

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 301
v1

0x7fdf18
0x400522

<step_up+25>

0x7fdf20
%rsp

0x400526
%rip

301

%rsi

0x7fdf20

%rdi

240

%rax

Stack

Frames

Prepare step_up
result

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

step_up

main

%rsp

Execute this instruction

ex

Procedure call example (step 6)

48

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 301
v1

0x7fdf18
0x400522

<step_up+25>

0x7fdf20
%rsp

0x400526
%rip

301

%rsi

0x7fdf20

%rdi

541

%rax

Stack

Frames

Prepare step_up
result

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

step_up

main

%rsp

add

ex

Deallocate space

for local varsProcedure call example (step 7)

49

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 301
v1

0x7fdf18
0x400522

<step_up+25>

0x7fdf20
%rsp

0x400526
%rip

301

%rsi

0x7fdf20

%rdi

541

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

main

Execute this instruction

step_up

ex

Deallocate space

for local varsProcedure call example (step 7)

50

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 301
v1

0x7fdf18
0x400522

<step_up+25>

0x7fdf28
%rsp

0x400526
%rip

301

%rsi

0x7fdf20

%rdi

541

%rax

Stack

Frames

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

main

%rsp

higher
address

shorten stack

ex

Procedure call example (step 8)

51

Return from step_up
to main

step_up:
400509: subq $8, %rsp
40050d: movq $240, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq (%rsp), %rax
400526: addq $8, %rsp
40052a: retq

Memory

• • •

0x7fdf28 0x40053b
<main+8>

0x7fdf20 301
v1

0x7fdf18
0x400522

<step_up+25>

0x7fdf30
%rsp

0x40053b
%rip

301

%rsi

0x7fdf20

%rdi

541

%rax

Stack

Frames

main

long step_up() {
 long v1 = 240;
 long v2 = increment(&v1, 61);
 return v1+v2;
}

increment:
4004cd: movq (%rdi), %rax
4004d0: addq %rax, %rsi
4004d3: movq %rsi, (%rdi)
4004d6: retq

%rsp

shorten stack

again

ex

Implementing procedures

1. How does a caller pass arguments to a procedure?

2. How does a caller receive a return value from a procedure?

3. How does a procedure know where to return 
(what code to execute next when done)?

4. Where does a procedure store local variables? 

5. How do procedures share limited registers and memory?

52

✓

✓

✓

✓

??

Have we now seen
how this is done?

Register saving conventions

Conventions:

Caller Save

Callee Save

53

yoo(…) {
• • •
who();
• • •

}

yoo 	 calls 	 who:
Caller	 	 	 Callee

yoo:
• • •

movq $12345, %rbx
call who
addq %rbx, %rax
• • •

ret

who:
• • •

addq %rdi, %rbx
• • •

ret
?

Will register contents still be there after a procedure call?

x86-64 register conventions

54

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value – Caller saved

Argument #4 – Caller saved

Argument #1 – Caller saved

Argument #3 – Caller saved

Argument #2 – Caller saved

Argument #6 – Caller saved

Argument #5 – Caller saved

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 0)

55

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf28
%rsp

0x400504
%rip

%rsi%rax

240

%rdi

Memory

• • •

0x7fdf28 0x40053b
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

main

Stack

Frames

main called step_by(240)

3

%rbx

Similar function, but now takes an arg for the local variable

Important value placed
there by main, callee saved

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 1)

56

0x7fdf20
%rsp

0x400506
%rip

%rsi%rax

240

%rdi

Memory

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18
0x7fdf10
0x7fdf08

Stack

Frames

Save register %rbx

3

%rbx

step_by

main

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

Save the value of %rbx so
we can use that register, too

Once this function is done,

restore saved value

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 2)

57

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf20
%rsp

0x400509
%rip

%rsi%rax

240

%rdi

Memory
Stack

Frames

Copy argument x to %rbx
for continued use after
calling increment.

240

%rbx

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18
0x7fdf10
0x7fdf08

step_by

main

Need to save the value

x to use later, after the

call to increment

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 3)

58

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf10
%rsp

0x400515
%rip

%rsi%rax

240

%rdi

Memory

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18 for alignment
0x7fdf10 240
0x7fdf08

Stack

Frames

Set up stack frame

Initialize v1

240

%rbx

step_by

main

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

Convention:

at call, %rsp
must be a
multiple of 16

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 4)

59

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf10
%rsp

0x40051d
%rip

61

%rsi%rax

0x7fdf10

%rdi

Memory
Stack

Frames

Set up arguments

240

%rbx

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18 for alignment
0x7fdf10 240
0x7fdf08

step_by

main

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 5)

60

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf10
%rsp

0x400522
%rip

301

%rsi

240

%rax

0x7fdf10

%rdi

Memory
Stack

Frames

Call, execute, and return

from increment

240

%rbx

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18 for alignment
0x7fdf10 301
0x7fdf08 0x400522

step_by

main

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 6)

61

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf10
%rsp

0x400525
%rip

301

%rsi

480

%rax

0x7fdf10

%rdi

Memory
Stack

Frames

Prepare return value

240

%rbx

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18 for alignment
0x7fdf10 301
0x7fdf08 0x400522

step_by

main

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

We know increment
restored %rbx

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 7)

62

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

0x7fdf20
%rsp

0x400529
%rip

301

%rsi

480

%rax

0x7fdf10

%rdi

Memory

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18 for alignment
0x7fdf10 301
0x7fdf08 0x400522

Stack

Frames

Clean up stack frame

240

%rbx

step_by

main

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

Shrink stack

step_by:
400504: pushq %rbx
400506: movq %rdi, %rbx
400509: subq $16, %rsp
40050d: movq %rdi, (%rsp)
400515: movq %rsp, %rdi
400518: movl $61, %esi
40051d: callq 4004cd <increment>
400522: addq %rbx, %rax
400525: addq $16, %rsp
400529: popq %rbx
40052b: retq

Callee-save example (step 8)

63

0x7fdf28
%rsp

0x40052b
%rip

301

%rsi

480

%rax

0x7fdf10

%rdi

Memory

• • •

0x7fdf28 0x40053b
0x7fdf20 3
0x7fdf18 for alignment
0x7fdf10 301
0x7fdf08 0x400522

Stack

Frames

Restore register %rbx
Ready to return

3

%rbx

main

long step_by(long x) {
 long v1 = x;
 long v2 = increment(&v1, 61);
 return x + v2;
}

callee saved: %rbx
caller saved: %rax, %rdi, %rsi

Restore %rbx

for main

Recursion example: code

64

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

base case/

condition

save/restore

%rbx (callee-save)

recursive

case

x&1 in %rbx
across call

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

0x7fdf38

%rsp

0x4005dd

%rip

?

%rax

2

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30
0x7fdf28
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

42

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2)

main

Stack

Frames

65

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

0x7fdf38

%rsp

0x4005e7

%rip

0

%rax

2

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30
0x7fdf28
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

Stack

Frames

42

%rbx

Recursion Example: pcount(2)

pc(2)

66

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

0x7fdf30

%rsp

0x4005eb

%rip

0

%rax

2

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

2

%rbx

Recursion Example: pcount(2)
Stack

Frames

67

pc(2)

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

0x7fdf30

%rsp

0x4005f1

%rip

0

%rax

1

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

0

%rbx

Stack

Frames

68

Recursion Example: pcount(2)

pc(2)

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

0x7fdf28

%rsp

0x4005dd

%rip

0

%rax

1

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

0

%rbx

Recursion Example: pcount(2) → pcount(1)
Stack

Frames

69

pc(2)

main

0x7fdf28

%rsp

0x4005e7

%rip

0

%rax

1

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20
0x7fdf18
0x7fdf10
0x7fdf08

0

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1)
Stack

Frames

70

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pc(2)

main

0x7fdf20

%rsp

0x4005eb

%rip

0

%rax

1

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1)
Stack

Frames

pc(1)

71

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pc(2)

main

0x7fdf20

%rsp

0x4005f1

%rip

0

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1)
Stack

Frames

72

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
} pc(1)

pc(2)

main

0x7fdf18

%rsp

0x4005dd

%rip

0

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

73

pc(1)

pc(2)

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

Recursion Example: pcount(2) → pcount(1) → pcount(0)

74

0x7fdf18

%rsp

0x4005fa

%rip

0

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Stack

Frameslong pcount(unsigned long x) {

 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pc(1)

pc(2)

main

0x7fdf20

%rsp

0x4005f6

%rip

0

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

75

pc(1)

pc(2)

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

0x7fdf20

%rsp

0x4005f6

%rip

0

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

76

pc(1)

pc(2)

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

0x7fdf20

%rsp

0x4005f9

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

1

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

77

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
} pc(1)

pc(2)

main

0x7fdf28

%rsp

0x4005fa

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

0

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

78

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pc(2)

main

0x7fdf30

%rsp

0x4005f6

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

0

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

79

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pc(2)

main

0x7fdf30

%rsp

0x4005f6

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

0

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

80

pc(2)

main

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

0x7fdf30

%rsp

0x4005f9

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

0

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

81

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

pc(2)

main

0x7fdf38

%rsp

0x4005f9

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

42

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)
Stack

Frames

82

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

main

0x7fdf40

%rsp

0x4006ed

%rip

1

%rax

0

%rdi

Memory

0x7fdf38 0x4006ed
0x7fdf30 42
0x7fdf28 0x4005f6
0x7fdf20 0
0x7fdf18 0x4005f6
0x7fdf10
0x7fdf08

Stack

Frames

42

%rbx

pcount:
4005dd: movl $0, %eax
4005e2: testq %rdi, %rdi
4005e5: je 4005fa <.L6>
4005e7: pushq %rbx
4005e8: movq %rdi, %rbx
4005eb: andl $1, %ebx
4005ee: shrq %rdi
4005f1: callq pcount
4005f6: addq %rbx, %rax
4005f9: popq %rbx
.L6:
4005fa: rep
4005fb: retq

Recursion Example: pcount(2) → pcount(1) → pcount(0)

83

long pcount(unsigned long x) {
 if (x == 0) {
 return 0;
 } else {
 return (x & 1) + pcount(x >> 1);
 }
}

main

Stack storage example 
(1)

84

long int call_proc()
{
 long x1 = 1;
 int x2 = 2;
 short x3 = 3;
 char x4 = 4;
 proc(x1, &x1, x2, &x2,
 x3, &x3, x4, &x4);
 return (x1+x2)*(x3-x4);
}

call_proc:
 subq $32,%rsp
 movq $1,16(%rsp) # x1
 movl $2,24(%rsp) # x2
 movw $3,28(%rsp) # x3
 movb $4,31(%rsp) # x4
 • • •

Return address to caller of call_proc ←%rsp

optional

Stack storage example 
(2) Allocate local vars

85

long int call_proc()
{
 long x1 = 1;
 int x2 = 2;
 short x3 = 3;
 char x4 = 4;
 proc(x1, &x1, x2, &x2,
 x3, &x3, x4, &x4);
 return (x1+x2)*(x3-x4);
}

call_proc:
 subq $32,%rsp
 movq $1,16(%rsp) # x1
 movl $2,24(%rsp) # x2
 movw $3,28(%rsp) # x3
 movb $4,31(%rsp) # x4
 • • •

Return address to caller of call_proc

←%rsp

x3x4 x2

x1

 8

 16

 24

optional

Stack storage example 
(3) setup args to proc

86

long int call_proc()
{
 long x1 = 1;
 int x2 = 2;
 short x3 = 3;
 char x4 = 4;
 proc(x1, &x1, x2, &x2,
 x3, &x3, x4, &x4);
 return (x1+x2)*(x3-x4);
}

call_proc:
 • • •
 leaq 24(%rsp),%rcx # &x2
 leaq 16(%rsp),%rsi # &x1
 leaq 31(%rsp),%rax # &x4
 movq %rax,8(%rsp) # ...
 movl $4,(%rsp) # 4
 leaq 28(%rsp),%r9 # &x3
 movl $3,%r8d # 3
 movl $2,%edx # 2
 movq $1,%rdi # 1
 call proc
 • • •

Arguments passed in (in order):
%rdi, %rsi, %rdx, %rcx, %r8, %r9

Return address to caller of call_proc

←%rsp

x3x4 x2

x1

 8

 16

 24

Arg 8

Arg 7

optional

call_proc:
 • • •
 movswl 28(%rsp),%eax # x3
 movsbl 31(%rsp),%edx # x4
 subl %edx,%eax # x3-x4
 cltq # sign-extend %eax->%rax
 movslq 24(%rsp),%rdx # x2
 addq 16(%rsp),%rdx # x1+x2
 imulq %rdx,%rax # *
 addq $32,%rsp
 ret

Stack storage example 
(4) after call to proc

87

long int call_proc()
{
 long x1 = 1;
 int x2 = 2;
 short x3 = 3;
 char x4 = 4;
 proc(x1, &x1, x2, &x2,
 x3, &x3, x4, &x4);
 return (x1+x2)*(x3-x4);
}

Return address to caller of call_proc

←%rsp

x3x4 x2

x1

 8

 16

 24

Arg 8

Arg 7

optional

call_proc:
 • • •
 movswl 28(%rsp),%eax
 movsbl 31(%rsp),%edx
 subl %edx,%eax
 cltq
 movslq 24(%rsp),%rdx
 addq 16(%rsp),%rdx
 imulq %rdx,%rax
 addq $32,%rsp
 ret

Stack storage example 
(5) deallocate local vars

88

long int call_proc()
{
 long x1 = 1;
 int x2 = 2;
 short x3 = 3;
 char x4 = 4;
 proc(x1, &x1, x2, &x2,
 x3, &x3, x4, &x4);
 return (x1+x2)*(x3-x4);
}

←%rsp
Return address to caller of call_proc

optional

Procedure Summary
call, ret, push, pop
Stack discipline fits procedure call / return.*

If P calls Q: Q (and calls by Q) returns before P

Conventions support arbitrary function calls.

Register-save conventions. 
Stack frame saves extra args or local variables. Result returned in %rax

89

Return Address

Saved Registers

+

Local Variables

Extra Arguments

for next call

…

Extra Arguments

to callee

Caller

Frame

Stack pointer
%rsp

Callee

Frame

128-byte red zone

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value – Caller saved

Argument #4 – Caller saved

Argument #1 – Caller saved

Argument #3 – Caller saved

Argument #2 – Caller saved

Argument #6 – Caller saved

Argument #5 – Caller saved

functions allowed
to use this before
changing %rsp

