
Assignment for Lab 10
Data Structure Representations

Computer Science 240

In lab this week, you will write some assembly language programs to study how data structures are stored in memory.
To investigate this concept, it is useful to write some X86 assembly code directly (rather than producing it by
compiling C code, as we have been doing up to now). Below on the left is an example of a simple C program, and on
the right is the corresponding X86 program which performs the equivalent task.

1. Now that you have had some experience with disassembly, it should be fairly straightforward to correlate the C code
below to the X86 code. Draw some lines between the two versions of the program below and make some notes to
indicate how the C code is implemented in X86.

simple.c: (C code)

#include <stdio.h>
int total = 0;

int sum(int x,int y)
{
 int t = x + y;
 total +=t;
 return t;
}

int main()
{
 int x = 2;
 int y = 3;
 printf("Sum = %d\n",sum(x,y));
 printf("Total = %d\n",total);
 return 0;
}

simple.s: (X86 code)
 .data
 .globl total
total: .long 0
fstr1: .string "Sum = %d\n"
fstr2: .string "Total = %d\n"

 .text
 .global main
main:
 pushl %ebp
 movl %esp, %ebp
 subl $32, %esp
 movl $2, -4(%ebp)
 movl $3, -8(%ebp)
 movl -8(%ebp),%edx
 movl %edx,4(%esp)
 movl -4(%ebp),%edx
 movl %edx,(%esp)
 call sum
 movl $fstr1, %edx
 movl %eax, 4(%esp)
 movl %edx, (%esp)
 call printf
 movl $fstr2, %edx
 movl $total,%eax
 movl (%eax),%eax
 movel %eax, 4(%esp)
 movl %edx, (%esp)
 call printf
 movl $0, %eax
 leave
 ret

sum:
 pushl %ebp
 movl %esp, %ebp
 subl $16, %esp
 movl 12(%ebp), %eax
 movl 8(%ebp), %edx
 leal (%edx,%eax), %eax
 movl %eax, -4(%ebp)
 movl $total,%edx
 movl (%edx),%eax
 addl -4(%ebp), %eax
 movl %eax, (%edx)
 movl -4(%ebp), %eax
 leave
 ret

NOTE: There are some lines you probably do not completely understand in the X86 code. The lines beginning with
periods, like ".data", ".long", or ".string" are assembler directives -- commands that tell the assembler how to assemble

the file. The lines beginning with some text followed by a colon, like "main:", are labels, or named locations in the
code. To see a list of possible directives, visit: http://tigcc.ticalc.org/doc/gnuasm.html#SEC67

2. Using the previous program as a guide, write an X86 program which implements the following C program (do NOT
use the computer to compile the C program and produce the X86 code; instead, write it from scratch).

simple1.c: (C code)

#include <stdio.h>
int z;

int square(int n)
{
 return n*n;
}

int main()
{
 int x = square(3);
 int y = square(4);
 z = x + y;
 printf("Calculation produces %d\n",z);
}

