
Laboratory 10
Data Structures Representation

Computer Science 240

One-dimensional arrays

 Different languages use different implementations at the machine

level to represent data structures.

 In Java, arrays are actually implemented as arrays of addresses
 (pointers) to the elements, which are stored elsewhere in memory (not
 necessarily in contiguous locations).

 In C, the elements of the array are stored in a contiguous block,
 starting at the base address of the array.

 In the C model,

 address of element in array = base address + element size * index

If the size of the element is limited to 1, 2, or 4 bytes, what is
another more efficient way to accomplish the multiplication?

 In C, to define some arrays of 8 elements of different sizes:

 int elements[] = {0x1, 0x3, 0x5, 0x7, 0x9, 0x11, 0x13, 0x15};
 short welements[] = {0x23, 0x25, 0x27, 0x29, 0x31, 0x33, 0x35, 0x37}
 byte belements[] = {0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90}

 The equivalent in X86 is:

 .data
elements: .long 0x1, 0x3, 0x5, 0x7, 0x9, 0x11,0x13,0x15
welements: .word 0x23,0x25,0x27,0x29,0x31,0x33,0x35,0x37
belements: .byte 0x20,0x30,0x40,0x50,0x60,0x70,0x80,0x90

 Either would be displayed using gdb as:

 0x8049714 <elements >: 0x00000001 0x00000003 0x00000005 0x00000007
 0x8049724 <elements+16>: 0x00000009 0x00000011 0x00000013 0x00000015
 0x8049734 <welements >: 0x00250023 0x00290027 0x00330031 0x00370035
 0x8049744 <belements >: 0x50403020 0x90807060

Two-dimensional arrays

In C, when nested array of arrays are used, each row is stored
contiguously in memory (row-major format), and the address of an
element can be calculated by the following formula (size of row is
the number of columns in a row):

 address of element[row][col] =
 base address of array +
 (row * size of row * size of element) +
 (col * size of element)

 -or-

 base address of array +
 (row*size of row + col)*size of element

 In C, to define a 4x4 array of integers:

int twodarr[4][4] = {{0x1, 0x2, 0x3, 0x4},
 {0x4, 0x6, 0x7, 0x8},
 {0x9, 0x10,0x11,0x12},
 {0x13,0x14,0x15,0x16}};

 The equivalent in X86 is:

 .data
twodarr: .long 0x1, 0x2, 0x3, 0x4
 .long 0x5, 0x6, 0x7, 0x8
 .long 0x9, 0x10,0x11,0x12
 .long 0x13,0x14,0x15,0x16

 Either would be displayed using gdb as:

 0x80497a0 <twodarr >: 0x00000001 0x00000002 0x00000003 0x00000004
 0x80497b0 <twodarr+16>: 0x00000004 0x00000006 0x00000007 0x00000008
 0x80497c0 <twodarr+32>: 0x00000009 0x00000010 0x00000011 0x00000012
 0x80497d0 <twodarr+48>: 0x00000013 0x00000014 0x00000015 0x00000016

