CS 240 Lab 3 Basic Digital Circuits

- Multiplexer
- Decoder
- Adder
- Two's Complement and Overflow

Multiplexer

- n select lines
- 2^{n} input lines
- 1 output

One of the possible 2^{n} inputs is chosen by the n select lines, and gated through to the output of a multiplexer.

S2	S1	S0	\mathbf{Q}
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Multiplexers are usually used for selection, but can also act as code detectors.

Decoder

- n input/select lines
- 2^{n} outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

S2		O1 Q2 ${ }^{\text {O}}$			
$0 \quad 0$	1	$0 \quad 0 \quad 0$	0	0	
01	0	100	0	0	
0	0	010	0	0	
11	0	$0 \quad 0$		0	
00	0	$0 \quad 0 \quad 0$		O	
0	0	$0 \quad 0 \quad 0$	0	,	
0	0	00		0	

Half-Adder - adds two one-bit values
A
B

A	B	Sum	Cout
0	0		
0	1		
1	0		
1	1		

Full Adder - incorporates a carry-in

A	B	Cin	Sum	Cout	
0	0	0	0	0	Sum $=A \oplus B \oplus C$ in
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Cout $=A B+(A \oplus B)$ Cin
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

n-bit adder = n 1-bit adders
Carry-out of each adder = Carry-in of the adder for next two most significant bits being added

Two's Complement and Overflow

Given n bits, the range of binary values which can be represented using
Unsigned representation: $0 \rightarrow 2^{\mathrm{n}}-1$
Signed representation: $-2^{n-1}->2^{n-1}-1$ because one bit is used for sign

Two's Complement (signed representation):
Most significant /leftmost bit ($0 /$ positive, $1 /$ negative)
Example: given a fixed number of 4 bits:
1000_{2} is negative.
0111_{2} is positive.

Overflow

Given a fixed number of n available bits:
Overflow occurs if a value cannot fit in n bits.
Example: given 4 bits:
The largest negative value we can represent is $-810\left(1000_{2}\right)$.
The largest positive value we can represent is $+710\left(0111_{2}\right)$.

Overflow in Addition

When adding two numbers with the same sign which each can be represented with n bits, the result may cause an overflow (not fit in n bits).

An overflow occurs when adding if:
Two positive numbers added together yield a negative result, or Two negative numbers added together yield a positive result, or The carry-in and carry-out bits to the most significant pair of bits being added are not the same.

An overflow cannot result if a positive and negative number are added.
Example: given 4 bits:
0111
$+0001$
1000 overflow NOTE: there is not a carry-out!
In two's complement representation, a carry-out does not indicate an overflow, as it does in unsigned representation.

Example: given 4 bits,
1001 (-7)
$+1111(-1)$
$11000(-8)$ no overflow, even though there is a carry-out

