
Assignment for Laboratory 5

Computer Science 240

Due: Before lab (hand in only the first page)

You will be spending the next lab implementing and experimenting with a data and control
path for the small instruction set architecture you have begun learning about in lecture.

After revieiwing the specification for the simple architecture described on the following pages,
answer these questions:

1. How many instructions are there in the instruction set?

2. How many bits are there in each instruction?

3. What instruction is represented by the hexadecimal value 0x0201? (each digit represents
4 bits)

4. What is the 16-bit binary form of the following instruction:

ADD R1 R1 R4

What are the contents of Register 1 and Register 4 after this instruction is executed?

5. Given the following instruction at address 8 in memory:

 8: BEQ R5 R6 C

Assume register 5 contains FFFE, and register 6 contains FFFE and that the offset is
interpreted as a signed, 4-bit, two’s complement values.

After this instruction is executed, what will be the address of the next instruction?

6. Repeat question 5, but assume that the original value of register 5 = 0003, and register 6
= 0002. What will be the address of the next instruction?

Specif ication for Instruction Set Architecture

The word length for this machine is 16 bits, so every instruction is 16 bits in length.

Memory is byte-addressable, and the instruction memory contains 256 bytes of data.

The program counter is an 8-bit register which always contains the address in instruction
memory of the instruction currently being executed. The program counter is controlled by
hardware, and cannot be directly accessed by any instruction.

The starting address of a program loaded into memory will be address 0. To start a program,
the program counter will be reset and initialized to 0.

Because instructions are 16 bits in length, the program counter must be incremented by 2 to
move to the next instruction.

There are also 16 registers of 16-bit size available to the programmer. There are 14
general-purpose registers (R2-R15) and 2 constant value registers (R0-R1). The R0 register
always contains 0 and the R1 register always contains 1. Neither R0 nor R1 can be modified
by any instruction.

Instructions specify a 4-bit operation code and operands that either represent register
numbers or offsets. When a register number is used, it means to use the value stored in that
register for the operation.

Instruction Meaning Format
 Op Rs Rt Rd or offset
 4-bit 4-bit 4-bit 4-bit .
LW Rs, Rt, offset Load Rt with word from 0000 0-15 0-15 offset

Data Memory at
address(Rs + offset)

SW Rs, Rt, offset Data Memory 0001 0-15 0-15 offset

address(Rs + offset)
stored with word from
Rt

ADD Rs,Rt,Rd Rd := Rs + Rt 0010 0-15 0-15 0-15
SUB Rs,Rt,Rd Rd := Rs - Rt 0011 0-15 0-15 0-15
AND Rs,Rt,Rd Rd := Rs AND Rt 0100 0-15 0-15 0-15
OR Rs,Rt,Rd Rd := Rs OR Rt 0101 0-15 0-15 0-15

SLT Rs,Rt,Rd If Rs<Rt then

 Rd:=1
 else 0110 0-15 0-15 0-15
 Rd := 0

BEQ Rs,Rt,offset If Rs=Rt then
 pc:=pc+2+(offset*2) 0111 0-15 0-15 offset
 else
 pc:=pc+2

JMP offset Jump to abs. addr =
 offset*2 1000 -----12 bit offset-----

The high four bits always specify the operation while the low 12 bits specify registers and
offsets, depending on the instruction type.

Mathematical operations (ADD, SUB, AND, OR, SLT) operate only on registers.

 Data transfer and branching operations (LW, SW, BEQ) operate on two registers and an
absolute offset value.

The jump operation (JMP) operates on a single 12-bit offset.

Mathematical and logical operations treat the low 12 bits as register identifiers. The high
four bits represent Ra, the middle four Rt and the low four Rd as specified in the previous
table.

Addition, subtraction and set-greater-than treat the contents of Rs and Rt as 16 bit, two’s
complement numbers. Logical operations (AND,OR) treat Rs, Rt and Rd as unsigned, 16 bit
values.

Load and store operations use the low 12 bits to specify memory address,
source/destination register and offset respectively. Rs specifies the register containing a
base address. Rd specifies the offset and Rt specifies the destination (or source) for data
being read (or stored). Note that the only addressing mode is register indirect.

The branch equal (BEQ) operator uses the low 12 bits to specify the registers for comparison
and the branch offset. Rs and Rt specify registers whose values are to be compared. If they
are equal, the program counter is incremented by 2, and then incremented by (2 * offset).

Offsets for loading, storing and branching are 4 bit, 2’s complement numbers that specify
offsets as words. Be cautious as you add and subtract offsets to get new program counter
values. The length of the offset limits how far a program can branch using the BEQ command.

The jump operation uses the low 12 bits to specify a single offset value (this value should be
in the range of 0 to 127, to guarantee a legal address within the range of 0 to 254. Unlike
the branch offset, the jump offset is not interpreted as a 2’s complement number. An 8-bit
absolute address is formed by multiplying the offset value by 2 (shift left). The JMP operation
is achieved by setting the program counter to this address.

