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Arithmetic Logic Unit (ALU) Q

ajew bits ~_ condition Codes

(sign, overflow, carry-out, zero)
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words =) Result
Operand B =) I
Operation
\
a few bits

Hardware unit for arithmetic and bitwise operations.



1-bit ALU for bitwise operations

Build an n-bit ALU from n 1-bit ALUs.
Each bit jin the result is computed from the corresponding bit i in the two inputs.

Op A B | Result

Operation 0 0
\L 0 0 1
A-e 1
— O o |1 ]
E 5 Result 0 1 1
>
1 0 0
B—o—§ )—> 1
1 1 0
1 1 1




1-bit adder

Build an n-bit adder from n 1-bit adders.
Each bit jin the result is computed from the corresponding bitiin the two inputs
and the carry out of bit i-1.

, A | B |[Carryin| Carryout| Sum
Carry in
0 0 0
0 0 1
0 1 0
look inside 0 1 1
during lab
1 0 0
1 0 1
Carry out
1 1 0
1 1 1




Carry in

n-bit ripple-carry adder
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= Sum;,

= Sum,

= Sum, 4

Carry out

There are faster, more complicated waystoo...



1-bit ALU

Operation

Carry in

9

5| Sum

Carry out

> Result




n-bit ALU

with ripple carry
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Adding subtraction

> Result

Invert B Carryin %
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Different than in SCO book.

l

Carry out



ALU Condition Codes (x86)

Extra ALU outputs describing properties of resulit.
Zero Flag: 1 if resultis 00...0else 0
Sign Flag: sign bit of result

Carry Flag: 1 if unsigned overflow else O
carry-out bit of result

Overflow Flag: 1 if signed overflow else 0



Compute NAND, NOR, NOT A,

Set inputs as needed.

> Result
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Carry out



Compute <, ==? Detect overflow?
Set inputs as needed, add minimal logic for overflow.

> Result
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Invert A NegateB

n-bit ALU Ao‘[;_jﬁ : N .
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Controlling the ALU

ALU control lines m Cond't'oiCOdes

Lo Operand A =)
0001 OR
0010 add "> Result
0110 subtract  OperandB =)
1100 NOR I
/ \ Control Lines
Invert A Operation ID

NegateB



