
ALU

Processor:	Data	Path	Components

Registers Memory
Instruction	
Fetch and	
Decode

1 324

Building	Blocks

Devices	(transistors,	
etc.)

Digital	Logic

Microarchitecture

Gates

Flip-Flops
Latches

Decoders
Encoders

Multiplexers
Demultiplexers

Arithmetic	Logic	Unit

Registers

Memory

Processor	datapath

Adders

Instruction	Decoder

Arithmetic	Logic	Unit	(ALU)

Operand	A

Operand	B

Condition	Codes
(sign,	overflow,	carry-out,	zero)

Result

Operation

Hardware	unit	for	arithmetic	and	bitwise	operations.

words

word

a	few	bits

a	few	bits

1

ALU

1-bit	ALU	for	bitwise	operations
Build	an	n-bit	ALU	from	n	1-bit	ALUs.
Each	bit	i in	the	result	 is	computed	 from	the	corresponding	 bit	i in	the	two	inputs.

M
U
X

A

B

0

1

Operation

Result

Op A B Result

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

ex

1-bit	adder

A B Carry	in Carry	out Sum

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

+A

B
Sum

Carry	in

Carry	out

Build	an	n-bit	adder	 from	n	1-bit	adders.
Each	bit	i in	the	result	 is	computed	 from	the	corresponding	 bit	i in	the	two	inputs	
and	the	carry	out	of	bit	i-1.

look	inside	
during	lab

ex

n-bit	ripple-carry	adder
+A0

B0
Sum0

Carry	in

+An-1

Bn-1
Sumn-1

Carry	out

+A1

B1
Sum1

+A2

B2
Sum2

…

There	are	faster,	more	complicated	ways	too…

1-bit	ALU

a

b

0

1

Operation

Result

2

2Carry	in

+ Sum

Carry	out

MUX

n-bit	ALU
with	ripple	carry

A0

B0

0

1
Result0

2

Carry	in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry	out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

…

2

Adding	subtraction

A

B

0

1

Operation

Result

2

2Carry	in

+ Sum

Carry	out

0

1

Invert	B

MUX

MUX

Different	than	in	SCO	book.

ALU	Condition	Codes	(x86)
Extra	ALU	outputs	describing	properties	of	result.

Zero	Flag: 1	if	result	is	00...0	else	0

Sign	Flag:	sign	bit	of	result

Carry	Flag: 1	if	unsigned	overflow	else	0
carry-out	bit	of	result

Overflow	Flag:	1	if	signed	overflow	else	0

Compute	NAND,	NOR,	NOT	A,	
Set	inputs	as	needed.

A

B

0

1

Operation

Result

2

2Carry	in

+ Sum

Carry	out

0

1

Invert	B

MUX

MUX

0

1
MUX

Invert	A

ex

Compute	<,	==?	Detect	overflow?
Set	inputs	as	needed,	add	minimal	logic	for	overflow.

ex

A

B

0

1

Operation

Result

2

2Carry	in

+ Sum

Carry	out

0

1

Invert	B

MUX

MUX

0

1
MUX

Invert	A

n-bit	ALU 0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry	out

MUX

0

1
Result1

2+

MUX

Operation

…

A1 0

1

B1 0

1

A0 0

1

B0 0

1

Negate	B

An-1 0

1

Bn-1 0

1

....

Invert	A

....

2

Controlling	 the	ALU

ALU control	lines Function

0000 AND
0001 OR
0010 add
0110 subtract
1100 NOR

Invert	A
Negate	B

Operation	ID

Operand	A

Operand	B

Result

Control	Lines

Condition	Codes

ALU

