Processor: Data Path Components

Instruction

Fetch and Registers
Decode




Building Blocks

. . Processor datapath
Microarchitecture

Instruction Decoder
Arithmetic Logic Unit

Adders ~ Registers

Memory

Multiplexers
o : Demultiplexers Flio-Flops
Digital Logic crcoders e
Decoders
Gates

Devices (transistors,

etc.)




Arithmetic Logic Unit (ALU) Q

ajew bits ~_ condition Codes

(sign, overflow, carry-out, zero)

1

Operand A =) word
words =) Result
Operand B =) I
Operation
\
a few bits

Hardware unit for arithmetic and bitwise operations.



1-bit ALU for bitwise operations

Build an n-bit ALU from n 1-bit ALUs.
Each bit jin the result is computed from the corresponding bit i in the two inputs.

Op A B | Result

Operation 0 0
\L 0 0 1
A-e 1
— O o |1 ]
E 5 Result 0 1 1
>
1 0 0
B—o—§ )—> 1
1 1 0
1 1 1




1-bit adder

Build an n-bit adder from n 1-bit adders.
Each bit jin the result is computed from the corresponding bitiin the two inputs
and the carry out of bit i-1.

, A | B |[Carryin| Carryout| Sum
Carry in
0 0 0
0 0 1
0 1 0
look inside 0 1 1
during lab
1 0 0
1 0 1
Carry out
1 1 0
1 1 1




Carry in

n-bit ripple-carry adder

= Sum,

= Sum;,

= Sum,

= Sum, 4

Carry out

There are faster, more complicated waystoo...



1-bit ALU

Operation

Carry in

9

5| Sum

Carry out

> Result




n-bit ALU

with ripple carry

Carry in

\
0

MUX[ Result,
1

| 2~

0
MUX [ Result;
1

MUX[ Result, 4

Sum
—>

Carry out



Adding subtraction

> Result

Invert B Carryin %
\
A — D J 0
MUX
[ BN
T~ > ; Sum
B > 0 ) + > 2
‘ MUX >
1 /
/

Different than in SCO book.

l

Carry out



ALU Condition Codes (x86)

Extra ALU outputs describing properties of resulit.
Zero Flag: 1 if resultis 00...0else 0
Sign Flag: sign bit of result

Carry Flag: 1 if unsigned overflow else O
carry-out bit of result

Overflow Flag: 1 if signed overflow else 0



Compute NAND, NOR, NOT A,

Set inputs as needed.

> Result

Invert A
l Invert B -
2 Carry in £
A Moux * ) 3 0
1
— MUX
.?l/ NE
B > Sum
B > 0 ) + > 2
‘ MUX >
/

Carry out



Compute <, ==? Detect overflow?
Set inputs as needed, add minimal logic for overflow.

> Result

Invert A
l\lnvert B Carry in
\\
A Moux * ) 3 O
1
— MUX
[ BN
B > Sum
B > 0 ) -+ > 2
MUX >
1 /

l

Carry out



Invert A NegateB

n-bit ALU Ao‘[;_jﬁ : N .

MUX [T Result,

MUX[T> Result;

An 1 0 T~
1 ! :)' A0
U R MUX[— Result, 4
) )

Carry out



Controlling the ALU

ALU control lines m Cond't'oiCOdes

Lo Operand A =)
0001 OR
0010 add "> Result
0110 subtract  OperandB =)
1100 NOR I
/ \ Control Lines
Invert A Operation ID

NegateB



