Ahead-of-time compiler

compile time

x86 machine
"1 code

C source] x86 assembly | [yg6
code C compiler [—code assembler

run time

x86 computer

Data —

——— Output

Figures for compilers/runtime _systems adapted from slides by Steve Freund.

Typical Compiler

Source
Program

Lexical Analyzer
Syntax Analyzer

Semantic Analyzer

Analysis

L Intermediate Code
Generator

Code Optimizer

Code Generator

Synthesis

Target
Program
2

Interpreter

Source
Program

Interpreter =
virtual machine

Data -

L. Output

Compilers... that targetinterpreters

Java source Java
code Java Compiler [—|bytecod
Java
bytecode Java
Virtual

Machine

——— Output

Data —

12/9/15

Interpreters... that use compilers.

Source
Program

Data

Compiler

Target
Program
Virtual

Machine

Output

JIT Compilers and Optimization

Java

source
code

just-in-time
compiler

x86

: 3
avac B
L 8 code
13
e}
Java Performance
bytecode — | Monitor

bytecode
interpreter

Data ——

JVM

machine

HotSpot JVM
Jikes RVM
SpiderMonkey
v8

Transmeta

Virtual Machine Model

Bytecode
compiler

Virtual machine
(interpreter)

High-Level Language Program

Virtual Machine Language

192

Native Machine Language

Ahead-of-time
compiler

On translation, layout, and implementation

We show natural, common, or conventional translations.

Java: No guarantee of this implementation/layout.

Language is (mostly clean) abstraction.

C: Much of implementation/layout guaranteed.
Language exposes many machine details.

12/9/15

Data in Java

Integers, floats, doubles, pointers — same as C
Null is typically represented as 0

Characters and strings

Arrays

Objects
pointers? called ‘references’ — much more constrained

Data Representation inJava

Data in Java

Arrays
Every element initialized to 0 or null
Length specified in immutable field at start of array (int —4 bytes)
array.length returns value of this field
Since it has this info, what can it do?

intarray[5]:

SN 5 5
0 4

20 24

Java |5 |00|oo|00|00|oo|

DataRepresentation inJava

Data in Java

Arrays
Every element initialized to 0 or null
Length specified in immutable field at start of array (int —4 bytes)
array.length returns value of this field
Every access triggers a bounds-check
Code is added to ensure the index is within bounds
Exception if out-of-bounds

Bounds-checking sounds slow, but:
intarray[5]: 1. Length is likely in cache.
2. Compiler may store length in register

c for loops.
3. Compiler may prove that some checks
0 4 20 24 are redundant.

Java |5 |oo|00|oo|oo|00|

DataRepresentation inJava

Datain Java

Characters and strings
Two-byte Unicode instead of ASCII
Represents most of the world’s alphabets
String not bounded by a ‘\0’ (null character)
Bounded by hidden length field at beginning of string

the string ‘CS 240"

C: ASCI |43|53|20|32|34|30|\0|
0 1 4 7 16

Java: Unicodel 6 W43|00|53|00|20|W|32|00|34|oo|30|

DataRepresentation inJava

12/9/15

Data structures (objects)in Java

Objects are always stored by reference, never stored inline.
Include complex data types (arrays, other objects, etc.) using references

C |struct rec { Java |class Rec {
int 1i; int 1i;
int a[3]; int[] a = new int [3];
struct rec *p; Rec p;

Pointer/reference fields and variables

In C, we have “->” and “.” for field selection depending on
whether we have apointer to a struct or a struct
(*r).a is so common it becomes r->a

In Java, all non-primitive variables are references to objects
We always use r.a notation

}i

N ES

But really follow reference to r with offset to a, just like C's r->a

struct rec *r = malloc(...); r = new Rec() ;
struct rec r2; r2 = new Rec();

r->i = val; r.i =val;
r->al[2] = val; r.a[2] = val;
r->p = &r2; r.p = r2;

Javalmplementation

0 4 16 28“3“@ :—v,cma?mw nflax.: 8 12 16
Pointers/References

Pointers in C can point to any memory address
References in Java can only point to [the starts of] objects
And can only be dereferenced to access a field or element of that object

Casting in C

We can cast any pointer into any other pointer;
just look at the same bits differently

struct BlockInfo {
int sizeAndTags;

}i

}

c|struct rec { Java |class Rec {
int 1; int i;
int a[3]; int[] a = new int [3];
struct rec *p; Rec p;

Rec r = new Rec();

struct rec* r = malloc(..);
some fn(s(r.a[l])) //ptr some fn(r.a, 1) // ref, index
r\ X
ila P
0 4 16 20

DataRepresentation inJava

struct BlockInfo* next;
struct BlockInfo* prev;
bi
typedef struct BlockInfo BlockInfo;

int x;
BlockInfo *b;
BlockInfo *newBlock;

newBlock = (BlockInfo™*) ((char ¥*)

Cast b into char
pointer so that you
canadd byte offset
without scaling

1
Cast back into
BlockInfo pointer
SO you canuse it
as BlocklInfo struct

b+ x);

[=]n [e |

—
21 [z
X

0 4 8 12

Javalmplementation

12/9/15

Type-safe castingin Java

Can only cast compatible object references

class Baat extends Vehicle {
int propellers;

class Object

-

1 Class venicle {

—>»| int passengers;
}

Class Car extends vehicle (

int wheels;

}

// Vehicle is a super class of Boat and Car, which are siblings
Vehicle v = new Vehicle();
Car cl = new Car();
Boat bl = new Boat();
Vehicle vl = new Car(); // ok, everything needed for Vehicle
// is also in Car
Vehicle v2 = vl; // ok, vl is already a Vehicle
Car c2 = new Boat(); // incompatible type — Boat and
// Car are siblings
Car c3 = new Vehicle(); // wrong direction; elements in Car
// not in Vehic (wheels)
Boat b2 = (Boat) v; // run-time error; icle does not contain
// all elements in Boat (propellers)
Car c4 = (Car) v2; // ok, v2 started out as Car
Car c5 = (Car) bl; // incompatible types, bl is Boat

How is this implemented / enforced?

Javaobjects

class Point { fields
int x; /
int y;

. constructor
Point () {
x = 0;

y = 0;
}
methods
boolean samePlace (Point p) { /
return (x == p.x) && (y == p.y);
}

String toString() {
return "(" + x + "," 4y + M";

20

Javaob

Point object

jects

P

vtable pointer

Point class Vtable/l code: Point.samePlace ()|

y

< ._//__)lcode: Point.toString() |
|—

Point object

4
vtable pointer

X

y

For each class, compiler maps: field signature > offset (index)

vtable pointer : points to per-class virtual method table (vtable)

For each

class, compiler maps: method signature - index

samePlace: 0

toSt

ring: 1 5

Java:

return p.samePlace(q) ; return p.vtable[0] (this=p, q);

Implementing dynamic dispatch

Point class Vtableﬁl code: Point.samePlace () |
= .__//_)lcode:yoint.tostnng() |

Point object

Point object

p N vtable pointer

y

4
vtable pointer
q X
y

what happens (pseudo code):

Point* p = calloc(l,sizeof(Point))
Point p = new Point(); p->header = ...;

p->vtable = &Point_vtable;
Point_constructor(p);

12/9/15

Subclassing

class ColorPoint extends Point{
String color;
boolean getColor() {
return color;
}
String toString() {
return super.toString() + "[" + color + "1";

}
}

How do we access superclass pieces?
fields
inherited methods
Where do we put extensions?
new field
new method
overriding method

dynamic (method) dispatch

Java:
Point p = 222; what happens (pseudo code):
return p.toString() ; return p.vtable[1l] (p) s

Point object Point vtable

/‘) —
vtable o

= — |code: Point.samePl ace ()|
Yy
. . code: Point.toString()
ColorPoint object | - o |
ColorPointvtable
vtable D [N —
X
.__——)l code: ColorPoint.toString () |
y
—

color \—)lcode: Colo rPoint.getColor() |

12/9/15

