Dynamic Memory Allocation in the Heap
(malloc and free)

The Heap
Addr Perm Contents Managed by Initialized
2N-14 Stackl RW Procedure context Compiler Run-time
v
| Dynamic Programmer,
* Heap RW data structures malloc/free, Run-time
new/GC
. Global variables/ Compiler/
Startu
Statics static data structures Assembler/Linker P
Literals R String literals Comp||er/ Startup
Assembler/Linker
. Compiler/
X Instruct Start
Text fstructions Assembler/Linker el
0

Allocator Basics

Pages too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

D Free word

Y v D Allocated word
Allocated block Free block
(4 words) (3 words)

pointer to newly allocated block

of at least that size number of contiguous bytes required

v

void* malloc(size_t size);

pointer to allocated block to free

void free(void* ptr);

Example (32-bit words)

pl=mallocé); | [[[] [T T]I PI]IT]

p2=malloc20); | | [[JJ J PP]I TP PT 1]

p3=malloc2a); | [| []I I T T JIToTTT]T]

free (p2) ; NN EEEEEEEE

pd=malloc(®); [|| [JJITVJ TP TIPTT]

Beware fragmentation: unused memory that cannot be allocated.

11/20/15

Allocator Goals: malloc/free

1. Programmer does not decide locations of distinct objects.
Just what size, when needed, and when no longer needed

2. Fast allocation. mallocs/second

3.High memory utilization. | | [| | [1 111 1] 1[|]

Most of heap contains necessary program data.
Little wasted space.

Enemy: fragmentation.

Internal Fragmentation
payload smaller than block

block
A

payload

AN

ek

\ Internal /

fragmentation

Causes
block metadata
padding for alignment
explicit policy decisions

External Fragmentation (32-bit)

Total free space large enough,
but no single free block large enough

pl=malloc@é); [[J || J I J J QTP PT 1TV

p2=malloc20); | | | [[J] JT T TTT T 17]]
p3=malloc(24); [[[| [VPP J QTP PP IIT |
free(p2) ; NN EEEE

p4 = malloc(24);

Depends on the pattern of future requests.

Implementation Issues

Determine how much to free given just a pointer.
Keep track of free blocks.

Pick ablock to allocate.

Choose what do with extra space when allocating a structure

that is smaller than the free block used.

Make a freed block available for future reuse.

11/20/15

11/20/15

Knowing How Much to Free Keeping Track of Free Blocks

Keep length of block in header word preceding block
pleng P g Method 1: Implicit list of all blocks using length

Takes extra space!
- P P T

= A) A
AT 1 fesl J] o] TITT 1 080 |

HEEEEEEENEEEEEEEE Method 2: Explicit list of free blocks using pointers

PO

~_
PAAT] Dl £ 1 Tof T 111 [e]]

Method 3: Seglist

po=malloc(16); | | [T J I I TP P POl J PP] I 11]

block size data Different free lists for different size brackets
£ 0) ; . .
ree (p0) I I I I I I I I I I I I I I I I I I More methods that we will skip...
9 10
Implicit Free Lists PYSRTp—— Implicit Free List Example (32-bit)
3 zeroes in low-order bits
. 00000000
For each block we need: size, is-allocated? 00001000 s blocks in heap (sizelallocated): 8]0, 161, 320, 16]1
equence O OCKS In hea Size|allocateq): , ’ N
Could store this information in twowords: wasteful! 00010000 q P
. 00011000

Standard trick Start of heap

Steal low-order bit for aIIo'cated/freeﬂag. /' A D Free word

Mask off flag when using size. [0l feif] p21q | | | s | pia] D Allocated word

D Allocated word
wasted
1 word
- \/ ; ::;oecated 8 bytes =2 word alignment
block size |a '

Format of avload 8-byte alignment

allocated and paylc May require initial unused word

free blocks (application data,

when allocated) Causes some internal fragmentation
Sptene] PRk Special one-word marker (0]|1) marks end of list
zero size is distinguishable from all real sizes
11 12

Implicit List: Finding a Free Block
First fit:

Search list from beginning, choose first free block that fits

Next fit:
Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

13

Implicit List: Allocating in Free Block

Allocating in a free block: splitting
Allocated space may be smallerthan free space. Use it all? Splitit up?

8 24 8
i
p = malloc(12) ;
8 16 8 8
4
P

14

Implicit List: Freeing a Block

Simplest implementation:
Clear “allocated” flag.
Leads to “false fragmentation”

8| [i6) 8
T
free (p) ; P
8| |16 8 8
|_'_'

malloc (20) ; \

Enough contiguous space, but not one block!

Coalescing

Join (coalesce) with adjacent free blocks.
Coalesce with following (free) block:

16 16 8 8
free(p) 3
16 24 8
‘\ logically gone

Coalesce with the previous block?

10

11/20/15

Bidirectional Coalescing

Boundary tags [Knuth73]

Header —— | block size | a

Format of payload
allocated and (application data,
free blocks when allocated)
optional padding
Boundary tag block size a
(footer)
/\/\/‘\
16 16 |16 16|24 24|16 16

Constant-Time Coalescing: 4 cases

Case 1 Case2 Case 3 Case4

allocated allocated free free
freed block —

allocated free allocated free

18

Constant-Time Coalescing: 4 cases

ml |1 mil |1 mil |1 m1 |1
mi |1 ml |1 mi |1 m1l |1
n |1 n o n |1 ntm2 |0
—_ —_
n 1 n 0 n
m2 1 m2 1 m2 0
m2 |1 m2 |1 m2 |o mm2 |0
mi_ |o ntml |0 mi_ |o ntml+m2 | 0
ml 0 ml 0
n 1 n 1
> e
n |1 niml |0 n 1
m2_ |1 m2_ |1 ™2 0
me_ |1 m2__ |1 m2__ |0 mmlim2 | 0

19

Summary: Implicit Free Lists

Implementation: very simple

Allocate: O(blocks in heap)
Free:
Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

Splitting, boundary tags, coalescing are general to all allocators.

11/20/15

Explicit Free Lists

Allocated block: Free block:
block size | a blocksize |a
next pointer
payload prev pointer

(application data,
when allocated)

optional padding

block size a block size a

(same as implicit free list)

Maintain list of free blocks rather than implicit list of all blocks.

21

Explicit Free Lists

Logically (doubly-linked lists):

A s ¢ T

Physically: blocks can be in any order

Forward (next) links

c \J)
Back (prev) links

Allocating From Explicit Free Lists

Before
po I
® ¢
After @ (with splitting)
| e |
Ifj
= malloc (..)

24

Freeing with Explicit Free Lists

Insertion policy: Where in the free list do you put a freed block?
LIFO (last-in-first-out) policy
Pro: simple and constant time
Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
Con: linear-time search to insert freed blocks

Pro: studies suggest fragmentation is lower than LIFO

Cache effects?

11/20/15

Freeing With a LIFO Policy (Case 1)

Before

free(
”“"lfl_l_l_l_ﬁlllllll\‘l_tlﬂ

Insert the freed block at head of free list.

After

Head LI fPlefof [JTT 1]

20

What if the freed block is adjacent to another?

Before free (

Head r \?E[

Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the head of the free list.

After

Head ollllll!!!!! jglgl

Could be on either or both sides...

Freeing With a LIFO Policy (Case 3)

Before free (

Head
A

Splice out successor block, coalesce both memory blocks and
insert the new block at the head of the free list.

After

Head o

Freeing With a LIFO Policy (Case 4)

Before free(

A 4
ol o »Tn\@ﬂ
A 3
SET RET
Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the head of the list.

After

Head

11/20/15

Do we always need theboundary tag?

Allocated block:

block size |a

payload
(application data,
when allocated)

optional padding

block size a

Free block:

block size | a

next pointer

prev pointer

block size a

Explicit Free Lists: Summary

Implementation: fairly simple

Allocate: O(blocks) vs. O(all blocks)
Free: O(1)
Memory utilization:

depends on placement policy

larger minimum block size (next/prev)

Used widely in practice.

Splitting, boundary tags, coalescing are general to all allocators.

36

Seglist Allocators

Each size bracket has its own free list

sl L1

sl [T TP 111 [~

[[T TTTTTH1] [T~
soimf [|| TP 1T TT1 [1T1F

Faster best-fit allocation...

Summary of Key Allocator Policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:

First-fit, next-fit, best-fit, etc.

Seglists approximate best-fit in low time
Splitting policy

Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

41

11/20/15

