Memory Devices

Small: Register file (group of numbered registers)

Medium: SRAM (Static Random Access Memory)

Large: DRAM (Dynamic Random Access Memory)

Future?

Processor: Data Path Components

SRAM: Static Random Access Memory

SRAM read port: data out

Large register files are impractical.

Big MUX = *significant* gate delay.

Large memories use a shared output line.

No central gates/MUX to choose output!

Wired ORs (don't try this at home/in the lab, kids)

Data signal 1

Danger, Will Robinson!

(noninverting) tristate buffers

SRAM cell

one option

Organization of a 16 x 4 SRAM

(one option)

Selecting location 1101

Another organization of a 16 x 4 SRAM

Split-level row/column addressing = physical multidimensional array!

Selecting location 0010

Nibbles "striped" across 4 smaller memories.

Selecting location 1101

Nibbles "striped" across 4 smaller memories.

What value does location 1010 hold?

Organization of a 4M x 8 SRAM

(one option)

= 4 MB memory, size of a large cache for modern laptop

In practice, single set of data lines often time-shared for read (out)/write (in).

Dynamic RAM = DRAM

DRAM stores bit as charge on capacitor:

- 1 transistor accesses stored charge.
- requires periodic refresh = read-write (dynamic power)

SRAM stores bit on pair of inverting gates:

- several transistors
- requires continuous (static) power.

Bit line

64-bit DRAM

1. Select row

2. Copy row to latches

3. Refresh row from latches

4. Select column from latches

