

Basic combinational building blocks Logic for arithmetic

Common combinational circuits: encoders, decoders, multiplexers, adders, Arithmetic Logic Unit

(printed together, separate sets of slides online)

But first...

Recall: *sum of products*

logical sum (OR)

of products (AND)

of inputs or their complements (NOT).

Α	В	С	Μ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Gray Codes = reflected binary codes

Alternate binary encoding designed for electromechanical switches and counting.

How many bits change when incrementing?

Karnaugh Maps: find (minimal) sums of products

Α	В	С	D	F(A,	в, с,	D)
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	0		
0	1	1	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	0	1	1	1.	Cove
1	0	1	0	1		maxii
1	0	1	1	1		are p
1	1	0	0	1	2.	For e
1	1	0	1	1		comp
1	1	1	0	1		(mint

1 1 1 1 0

gray	code	CD					
or	der 〜 ∳	≻ 00	01	11	10		
	00	0	0	0	0		
AB	01	0	0	0	1		
AD	11	1	1	0	1		
	10	1	1	1	1		

- Cover exactly the 1s by drawing a (minimum) number of maximally sized rectangles whose dimensions (in cells) are powers of 2. (They may overlap or wrap around!)
- For each rectangle, make a *product* of the inputs (or complements) that are 1 for all cells in the rectangle. (*minterms*)

^{3.} Take the *sum* of these products.

