
1.	Basic	combinational	building	blocks
2.	Logic	for	arithmetic

Common	combinational	circuits:	encoders,	decoders,	multiplexers,	
adders,	Arithmetic	Logic	Unit

(printed	together,	separate	sets	of	slides	online)

Recall:	sum	of	products
logical	sum	(OR)
of	products	(AND)
of	inputs	or	their	complements	(NOT).

A B C M

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Construct	with:
• 1	code	detector	per	1-valued	output	row
• 1	large	OR	of	all	code	detector	outputs

Is	it	minimal?

But	first…

Gray	Codes	=	reflected	binary	codes

Alternate	binary	encoding
designed	for	electromechanical	switches	and	counting.

00			01			11			10

0					1					2					3

000			001			011			010			110			111			101			100

0								1								2								3								4								5								6							7

How	many	bits	change	when	incrementing?

Karnaugh Maps:		find	(minimal)	sums	of	products

A B C D F(A,	B,	C,	D)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 1 0 1

10 1 1 1 1

AB

CD

1. Cover	exactly	the	1s	by	drawing	a	(minimum)	number	of	
maximally	sized	rectangles	whose	dimensions	(in	cells)	
are	powers	of	2.		(They	may	overlap	or	wrap	around!)

2. For	each	rectangle,	make	a	product of	the	inputs	(or	
complements)	that	are	1	for	all	cells	in	the	rectangle.	
(minterms)

3. Take	the	sum of	these	products.

gray	code
order

ex

Voting	again	with	Karnaugh Maps

A B C M

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

ex Toolbox:	Building	Blocks

Devices	(transistors,	
etc.)

Digital	Logic

Microarchitecture

Gates

Flip-Flops
Latches

Decoders
Encoders

Multiplexers
Demultiplexers

Arithmetic	Logic	Unit

Registers

Memory

Adders

Instruction	Decoder

Processor	datapath

Decoders

Decodes	input	number,	asserts	corresponding	output.
n-bit	input		(an	unsigned	number)
2n outputs
Built	with	code	detectors.

D0

D1

D2

D3

B0

B1

B0

B1

D0

D1

D3

D2

ex Multiplexers

Select	one	of	several	inputs	as	output.

D0
D1
D2
D3
D4
D5
D6
D7

F8-to-1
MUX

A B C

2n data	inputs 1	data	output

n selector	lines

Build	a	2-to-1	MUX	from	gates

D0

D1

F
2-to-1
MUX

S

If	S=0,	then	F=D0.
If	S=1,	then	F=D1.

1.	Construct	the	truth	table.

2.	Build	the	circuit.

ex
8-to-1	MUX

Costume	idea:	MUX	OX

MUX	+	voltage	source	=	truth	table

A B C M

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

M8-to-1
MUX

A B C

0

1

2

3

4

5

6

7

Buses	and Logic	Arrays
A	bus is	a	collection	of	data	lines	
treated	as	a	single	logical	signal.
=	fixed-width	value

Array	of	logic	elements	applies	
same	operation	to	each	bit	in	a	bus.
=	bitwise	operator

Addition:
start	small	with	a	1-bit	(half) adder

A B Carry	out Sum

0 0

0 1

1 0

1 1

A

B

Sum

Carry	out

ex 1-bit	full	adder

A B Carry	in Carry	out Sum

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

n-bit	addition:		Sumi =	Ai +	Bi +	CarryOuti-1 Need	a	bigger	adder!

A

B

Sum

Carry	in

Carry	out

ex
+A

B

Sum

Carry	in

Carry	out

n-bit	ripple-carry	adder
+A0

B0

Sum0

Carry	in

+An-1

Bn-1

Sumn-1

Carry	out

+A1

B1

Sum1

+A2

B2

Sum2

…

There	are	faster,	more	complicated	ways	too…

ALU

Processor	Components

Registers Memory
Instruction	
Fetch and	
Decode

1 324

Arithmetic	Logic	Unit	(ALU)

Operand	A

Operand	B

Condition	Codes
(sign,	overflow,	carry-out,	zero)

Result

Operation

Hardware	unit	for	arithmetic	and	bitwise	operations.

words

word

a	few	bits

a	few	bits

1

ALU

1-bit	ALU	for	bitwise	operations
Build	an	n-bit	ALU	from	n	1-bit	ALUs.
Each	bit	i in	the	result	is	computed	from	the	corresponding	bit	i in	the	two	inputs.

M
U
X

A

B

0

1

Operation

Result

Op A B Result

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

ex

1-bit	ALU

A

B

0

1

Operation

Result

2

2Carry	in

+ Sum

Carry	out

MUX

A0

B0

0

1

Result0

2

Carry	in

+ Sum

MUX

An-1

Bn-1

0

1

Resultn-1

2+ Sum

Carry	out

MUX

A1

B1

0

1

Result1

2+ Sum

MUX

Operation

…

2

+A0

B0

Sum0

Carry	in

+An-1

Bn-1

Sumn-1

Carry	out

+A1

B1

Sum1

+A2

B2

Sum2

…

n-bit	ripple	carry	adder

n-bit	ALU

ALU	conditions
Extra	ALU	outputs	
describing	properties	of	result.

Zero	Flag:
1	if	result	is	00...0	else	0

Sign	Flag:
1	if	result	is	negative	else	0

Carry	Flag:
1	if	carry	out	else	0

(Signed)	Overflow	Flag:
1	if	signed	overflow	else	0

Implement	these.

A0

B0

0

1

Result0

2

Carry	in

+ Sum

MUX

An-1

Bn-1

0

1

Resultn-1

2+ Sum

Carry	out

MUX

A1

B1

0

1

Result1

2+ Sum

MUX

Operation

…

2

Add	subtraction 0

1

Result0

2+

MUX

0

1

Resultn-1

2+
Carry	out

MUX

0

1

Result1

2+

MUX

Operation

…

B1
0

1

B0
0

1

Bn-1
0

1

....

2

How	can	we	control	ALU	inputs

or	add	minimal	new	logic

to	compute	A-B?

A0

A1

An-1

A	NAND	B

A	NOR	B

A<B

A==B

How	can	we	control	ALU	inputs

or	add	minimal	new	logic

to	compute	each?

0

1

Result0

2+

MUX

0

1

Resultn-1

2+
Carry	out

MUX

0

1

Result1

2+

MUX

Operation

…

A1
0

1

B1
0

1

A0
0

1

B0
0

1

Negate	B

An-1
0

1

Bn-1
0

1

....

Invert	A

....

2

ex

Controlling	the	ALU

ALU control	lines Function

0000 AND

0001 OR

0010 add

0110 subtract

1100 NOR

Operand	A

Operand	B

Result

Control	Lines

Condition	Codes

ALU

