1. Basic combinational building blocks 2. Logic for arithmetic Common combinational circuits: encoders, decoders, multiplexers, adders, Arithmetic Logic Unit (printed together, separate sets of slides online)	But first... Recall: sum of products logical sum (OR) of products (AND) of inputs or their complements (NOT). Construct with: - 1 code detector per 1 -valued output row - 1 large OR of all code detector outputs Is it minimal?
Gray Codes $=$ reflected binary codes Alternate binary encoding designed for electromechanical switches and counting. How many bits change when incrementing?	Karnaugh Maps: find (minimal) sums of products 1. Cover exactly the 1 s by drawing a (minimum) number of maximally sized rectangles whose dimensions (in cells) are powers of 2. (They may overlap or wrap around!) 2. For each rectangle, make a product of the inputs (or complements) that are 1 for all cells in the rectangle. (minterms) 3. Take the sum of these products.

Decoders

Decodes input number, asserts corresponding output.
n-bit input (an unsigned number)
2^{n} outputs
Built with code detectors.

Toolbox: Building Blocks
 Processor datapath

Instruction Decoder Arithmetic Logic Unit

Digital Logic	Adders Multiplexers Demultiplexers Encoders Decoders Gates	Registers

Devices (transistors,
etc.)

Multiplexers

Select one of several inputs as output.

Build a 2-to-1 MUX from gates

If $S=0$, then $F=D_{0}$. If $S=1$, then $F=D_{1}$.

1. Construct the truth table.

2. Build the circuit.

8-to-1 MUX

Costume idea: MUX OX

Buses and Logic Arrays

A bus is a collection of data lines treated as a single logical signal.
= fixed-width value

Array of logic elements applies same operation to each bit in a bus.
= bitwise operator

Addition:

start small with a 1-bit (half) adder

A
Sum
B

A	B	Carry out	Sum
0	0		
0	1		
1	0		
1	1		

Carry out
n-bit ripple-carry adder

1-bit full adder

n-bit addition: Sum $_{i}=A_{i}+B_{i}+$ CarryOut $_{i-1} \quad$ Need a bigger adder!
Carry in

A

B

A	B	Carry in	Carry out	Sum
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Processor Components

Arithmetic Logic Unit (ALU)

Hardware unit for arithmetic and bitwise operations.

1-bit ALU

1-bit ALU for bitwise operations

Build an n-bit ALU from n 1-bit ALUs.
Each bit i in the result is computed from the corresponding bit i in the two inputs.

Operation	Op	A	B	Result
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

n-bit ripple carry adder

