
Exceptional	Control	Flow:
Hardware	support	for	reacting	to	the	rest	of	the	world.

Control	Flow
Processor: read	instruction,	execute	it,	go	to	next	instruction,	repeat

2

<startup>

inst1
inst2
inst3
…

instn
<shutdown>

Physical	control	flow

ti
m
e

Explicit	changes:
Jumps (conditional,	unconditional)
Call,	return

Exceptional	changes:
user	input

data	arrives	from	disk	or	network

unexpected	errors

system	calls

Exceptions
Synchronous:	caused	by	instruction	

Traps:	system	calls
Intentional:	transfer	control	to	OS	to	perform	some	function.

OS	runs	at	higher	privilege	level,	so	cannot	call	directly.

Returns	control	to	“next”	instruction.

Faults:	unintentional,	maybe	recoverable
page	faults,	protection	faults,	divide	by	zero

Fix	and	re-execute	faulting	instruction	or	abort	process.	

Aborts:	unintentional,	unrecoverable
hardware	failure	detected

Asynchronous	(Interrupts):	caused	by	external	events	
incoming	I/O	activity,	reset	button,	timers,	signals

transfer	control	to	OS	in	response	to	event
What	code	should	the	OS	run?

User	Code OS	Kernel

exception
exception	processing
by	exception	handler

return	or	abort

event	

4

Exceptions:	hardware	support	for	OS	

Interrupt	Vector

5

0
1
2 ...

n-1

Exception

Table

code	for		

exception	handler	0

code	for	

exception	handler	1

code	for

exception	handler	2

code	for	

exception	handler	n-1

...

a	jump	table	for	exceptions…

in	memory

special	register	holds	base	address

Open	a	file (trap/system	call)

7

User	process	calls:	open(filename, options)
open executes	system	call	instruction	int

0804d070 <__libc_open>:
. . .
804d082: cd 80 int $0x80
804d084: 5b pop %ebx
. . .

User	Code OS	Kernel

exception

open	file
returns

int
pop

int a[1000];
void bad () {

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	Code OS	Kernel

exception:	page	fault

detect	invalid	address
movl

signal	process

Segmentation	Fault

8

Write	to	invalid	memory	location.

aborts	process	with	SIGSEGV	signal

Write	to	valid	memory	location

...	but	contents	currently	on	disk	instead
(more	later:	virtual	memory)

int a[1000];
main () {

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	Code OS	Kernel

exception:	page	fault
Load	page	into	
memoryreexecute

same	instruction

movl

9

Page	Fault

