

IEEE Floating Point Standard 754
 IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

$$
\mathrm{V}_{10}=(-1)^{S} * M * 2^{E}
$$

Sign bit s determines whether number is negative or positive
Significand (mantissa) M usually a fractional value in range $[1.0,2.0$)
Exponent E weights value by a ($-/+$) power of two
Analogous to scientific notation

Representation:

MSB s=sign bit s
\exp field encodes E (but is not equal to E)
frac field encodes M (but is not equal to M)

Numerically well-behaved, but hard to make fast in hardware

Three kinds of values

$$
V=(-1)^{S} * M^{*} 2^{E} \quad \begin{array}{l|l|l|l}
& \text { s } & \exp & \text { frac } \\
\cline { 3 - 4 }
\end{array}
$$

1. Normalized: $M=1 . x x x x x$...

As in scientific notation: $0.011 \times 2^{5}=1.1 \times 2^{3}$
Representation advantage?
2. Denormalized, near zero: $M=0 . x x x x x . .$. , smallest E

Evenly space near zero.

3. Special values:

0.0:	$s=0$	$\exp =00 \ldots 0$
+inf, -inf:		
division by 0.0		exp $=11 \ldots 1$

Precisions

Single precision (float): 32 bits

s	\exp	frac	
1 bit $\quad 8$ bits	23 bits		

Double precision (double): 64 bits

s	\exp	frac	
1 bit $\quad 11$ bits	52 bits		

Finite representation of infinite range...

Value distribution

Normalized values, with float example

Result:
$0 \underset{\mathrm{~s}}{010001100} \underset{\exp }{10000001110010000000000}$

Value distribution example

6-bit IEEE-like format
Bias $=2^{3-1}-1=3$

2. Denormalized Values: near zero

"Near zero": exp = 000... 0

Exponent:

$$
E=1+\exp -\text { Bias }=1-\text { Bias not: exp - Bias }
$$

Significand: leading zero

$$
\begin{aligned}
& M=0 . \mathbf{x x x} . . . \mathbf{x}_{2} \\
& \text { frac }=\mathbf{x x x} \ldots . . \mathbf{x}
\end{aligned}
$$

Cases:
$\exp =000 \ldots 0$, frac $=000 \ldots 0$
$0.0,-0.0$

Value distribution example (zoom in on 0)
6-bit IEEE-like format
Bias $=2^{3-1}-1=3$

Try to represent 3.14, 6-bit example

6-bit IEEE-like format
Bias $=2^{3-1}-1=3$

Value: 3.14;

```
3.14 = 11.0010 0011 1101 01110000 1010 000...
```

$=1.1001000111101011100001010000 \ldots{ }_{2} \times 2^{1} \quad$ (normalized form)
Significand:
$M=$
1.10010001111010111011100001010000... 2
frac = 10_{2}

Exponent

$$
E=1 \quad \text { Bias }=3 \quad \exp =4=100_{2}
$$

Result:
$010010=1.10_{2} \times 2^{1}=3$ next highest?

Floating Point Arithmetic*
double $x=\ldots, y=\ldots$;
double $z=x+y$;

1. Compute exact result.
2. Fix/Round, roughly:

Adjust M to fit in [1.0, 2.0)..
If $M>=2.0$: shift M right, increment E
If $M<1.0$: shift M left by k , decrement E by k
Overflow to infinity if E is too wide for exp
Round* M if too wide for frac.
Underflow if nearest representable value is 0 .

