## Digital Logic

## Gateway to computer science

Transistors (more in lab)

If Base voltage is high: Current may flow freely from Collector to Emitter.

If Base voltage is low: Current may not flow from Collector to Emitter.

| Truth table |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{V}_{\text {in }}$ | $\mathbf{v}_{\text {out }}$ |  |  |  |
| low | high |  |  |  |
| high | low |  |  |  |$\quad$| in |
| :---: |
| out |



Digital data/computation = Boolean
Boolean value (bit): 0 or 1
Boolean functions (AND, OR, NOT, ...)
Electronically:
bit = high voltage vs. low voltage


Boolean functions = logic gates, built from transistors

## Digital Logic Gates

Tiny electronic devices that compute basic Boolean functions.

NOT


| $\mathbf{V}_{\text {in }}$ | $\mathbf{V}_{\text {out }}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |






## Circuits

Connect inputs and outputs of gates with wires.
Crossed wires touch only if there is a dot.


What is the output if $A=1, B=0, C=1$ ?
What is the truth table of this circuit?
What is an equivalent Boolean expression?

## Translation

Connect gates to implement these functions. Check with truth tables.
Use a direct translation -- it is straightforward and bidirectional.
$F=(A \bar{B}+C) D$
$Z=\bar{W}+(X+\overline{W Y})$


## Idempotent law, Null/Zero law



## Commutativity, Associativity




DeMorgan's Law
(double bubble, toil and trouble, in Randy's words...)
$=$


$=$

## One law, Absorption law

Write truth tables. Do they correspond to simpler circuits?

=


## XOR: Exclusive OR

Often used as a one-bit comparator.
Video game designers, Halloween costumers extraordinaire, sci-fi/fantasy screenwriters, I have an idea...


Truth table:
Build from earlier gates:
have an ide...

## NAND is universal.



All Boolean functions can be implemented using only NANDs. Build NOT, AND, OR, NOR, using only NAND gates.

## Circuit simplification

Is there a simpler circuit that performs the same function?


Start with an equivalent Boolean expression, then simplify with algebra.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=$

Check the answer with a truth table.

## Circuit derivation: sum-of-products form

logical sum (OR)
of products (AND)
of inputs or their complements (NOT)

Draw the truth table and design a sum-of-products circuit for a 4-input code detector to accept two codes ( $\mathrm{ABCD}=1001, \mathrm{ABCD}=1111$ ) and reject all others.
How are the truth table and the sum-of-products circuit related?

## Circuit derivation: code detectors

AND gate + NOT gates = code detector, recognizes exactly one input code .


Design a 4-input code detector to output 1 if $\mathrm{ABCD}=1001$, and 0 otherwise.
$\qquad$

| C |
| :--- |
| D | -

Design a 4-input code detector to accept two codes ( $\mathrm{ABCD}=1001, A B C D=1111$ ) and reject all others. (accept $=1$, reject $=0$ )

## Voting machines

A majority circuit outputs 1 if and only if a majority of its inputs equal 1.
Design a majority circuit for three inputs. Use a sum of products.

| A | B | C | Majority |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Triply redundant computers in spacecraft

- Space program also hastened Integrated Circuits.

