Processes

Focus:

Process model

Process management case study: Unix/Linux/Mac OS X
(Windows is a little different.)

Operating Systems

Problem: unwieldy hardware resources

Solution: operating system

Operating Systems, a 240 view

Focus: key abstractions provided by kernel

barely scraping the surface

Abstractions:
process
virtual memory

Virtualization mechanisms and hardware support:
context-switching
exceptional control flow
address translation, paging, TLBs

Processes

Program = code (static)

Process = a running program instance (dynamic)
code + state

Key illusions:

Why are these abstractions important?
How are these abstractions implemented?

Implementing logical control flow

Abstraction: every process has full control over the CPU

Process A Process B Process C

- T T

Implementation: time-sharing

Process A Process B Process C

time

Context Switching

Kernel (shared OS code) switches between processes

Control flow passes between processes via context switch.

Context =

Process A Process B

time

user code
kernel code

user code

kernel code

user code

} context switch

} context switch

fork

pid t fork()
1. Clone current parent process to create identical child process,
including all state (memory, registers, program counter, ...).
2. Continue executing both copies with one difference:
- returns 0 to the child process
- returns child’s process ID (pid) to the parent process

pid t pid = fork()
if (pid == 0) ({

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

}

forkis unique: called in one process, returns in two processes!

(once in parent, once in child)

3
»

hello from parent

. 4

»
2

Process n

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;
}

pid t pid = fork(); 9 m
if (pid 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;
}

pid t pid = fork() ;
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;

}

»

Which prints first?

Creating a new process with fork

Child Process m

pid_t pid = fork(); =) ()
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;
}

pid t pid = fork() ;
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;

}

hello from child

fork again

Parent and child continue from private copies of same state.

Memory contents (code, globals, heap, stack, etc.),
Register contents, program counter, file descriptors...

Only difference: return value from fork ()

Relative execution order of parent/child after fork () undefined

void forkl () {
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = $d\n", ++x);
} else {
printf ("Parent has x = $d\n", --x);
}

printf ("Bye from process %d with x = %d\n", getpid(), x);
}

fork-exec

fork-exec model:
fork () clone current process

execv () replace process code and context (registers, memory)
with a fresh program.

See man 3 execv, man 2 execve

// Example arguments: path="/usr/bin/ls”,
// argv[0]="/usr/bin/1ls”, argv[l]="-ahl", argv[2]=NULL
void fork exec(char* path, char* argv[]) {
pid t pid = fork();
if (pid '= 0) {
printf ("Parent: created a child %d\n”, pid);
} else {
printf ("Child: exec-ing new program now\n");
execv (path, argv);

}
printf ("This line printed by parent only'\n");

When you run the command 1s

Exec-ing a new program inashel

1 / Code/state of shell process.

Copy of code/state

of shell process.
/

Replaced by code/state of Is.

fork(): 1\
parent child \L
Stack Stack
2 exec (): 3
-
Heap
Data Data
/ Code: /usr/bin/bash Code: /usr/bin/Is

Code/state of shell process.

execv: load/start program

int execv (char* filename,
char* argv]])

loads/starts program in current process:
Executable £ilename

With argument list argv

overwrites code, data, and stack

Keeps pid, open files, a few other items

does not return

unless error

Also sets up environment. See also: execve.

Null-terminated
argument strings

unused

argv[argc] == NULL

argv[argc-1]

argv[0]

Linker vars

envp

argv

argc

Stack frame for
main

Stack bottom

Stack top

wadlt for child processes to terminate

pid t waitpid(pid t pid, int* stat, int ops)
Suspend current process (i.e. parent) until child with pid ends.
On success:
Return pid when child terminates.
Reap child.
If stat != NULL, waitpid saves termination reason where it points.

See also: man 3 waitpid

Zombies!

Terminated process still consumes system resources

Reaping withwait/waitpid

What if parent doesn’t reap?

If any parent terminates without reaping a child, then child will be reaped
by init process (pid == 1)

What if parent runs a long time? e.qg., shells and servers

] [] H B
waitpid example HeBve..

|CTBvye

void fork wait() {
int child_status;
pid t child pid == fork () ;

if (child pid == 0) {
printf ("HC: hello from child\n") ;
} else {

if (-1 == waitpid(child pid, &child status, 0) {
perror ("waitpid") ;
exit(1l);
}
printf ("CT: child %d has terminated\n”,
child pid);
}
printf ("Bye\n") ;
exit(0);

18

Error-checking

Check return results of system calls for errors! (No exceptions.)
Read documentation for return values.

Use perror to report error, then exit.

void perror (char* message)

Print "<message>: <reason that last system call failed.>"

