
Dimensionality 
Reduction and Principal 

Component Analysis

Dimensionality Reduction

● To visualize our data, e.g., if the dimensions can 
be reduced to 2 or 3.

● To save computer memory/disk space if the 
data are large.

● To reduce execution time.

Before running any ML algorithm on our data, 
we may want to reduce the number of features

Dimensionality Reduction results in an 
approximation of the original data
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Projecting Data - 3D to 2D Projecting Data - 3D to 2D

Projecting Data - 3D to 2D Why such projections are effective

● In many datasets, some of the features 
are correlated.

● Correlated features can often be well 
approximated by a smaller number of 
new features.

● For example, consider the problem of 
predicting housing prices. Some of the 
features may be the square footage of 
the house, number of bedrooms, 
number of bathrooms, and lot size. 
These features are likely correlated.



Principal Component Analysis (PCA)
Suppose we want to reduce 
data from d dimensions to k 
dimensions, where d > k.

PCA finds k vectors onto which 
to project the data so that the 
projection errors are minimized. 

In other words, PCA finds the 
principal components, which 
offer the best approximation. 

Principal Component Analysis (PCA)

Determine new basis.

Project data onto k axes of new 
basis with largest variance.

PCA ≠ Linear Regression

PCA Linear Regression
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PCA Algorithm
Given n data points, each with d features, i.e., an n×d matrix X:

● Preprocessing: perform feature scaling

● Compute covariance matrix

● Calculate eigenvalues and corresponding eigenvectors of 
covariance matrix 𝚺 via singular value decomposition

● This yields a new basis of d vectors as well as the variance 
along each of the d axes 

● Retain the k vectors with the largest corresponding variance and 
project the data onto this k-dimensional subspace



PCA Example PCA Example

PCA with sklearn

from sklearn.decomposition import PCA
pca = PCA(n_components=1)
Z = pca.fit_transform(X)
print(Z.shape)
print(pca.explained_variance_ratio_)

X is 30×2 matrix

(30, 1)
[ 0.5815958 ]

58% of variance 
explained by first 

principal component

Shape of 
compressed data Z

PCA with sklearn

from sklearn.decomposition import PCA
pca = PCA(n_components=1)
Z = pca.fit_transform(X)
print(Z.shape)
print(pca.explained_variance_ratio_)

X is 30×2 matrix

(30, 1)
[ 0.9945036 ]

99% of variance 
explained by first 

principal component

Shape of 
compressed data Z



PCA with sklearn

from sklearn.decomposition import PCA
pca = PCA(n_components=1)
Z = pca.fit_transform(X)
print(Z.shape)
print(pca.explained_variance_ratio_)

X is 30×2 matrix

(30, 1)
[ 1.0000000 ]

100% of variance 
explained by first 

principal component

Shape of 
compressed data Z

Iris Data

Iris setosa Iris virginica Iris versicolor

For 50 instances of each type of iris, 
we have four features:

sepal length, sepal width, petal length, petal width

Feature Scaling
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X is 150×4 matrix

from sklearn import preprocessing
X_scaled = preprocessing.scale(X)

X_scaled is 150×4 matrix

PCA: 4D to 2D from sklearn.decomposition import PCA
pca = PCA(n_components=2)
Z = pca.fit_transform(X_scaled)
print(Z.shape)
print(pca.explained_variance_ratio_)

Z is 150×2 matrix

(150, 2)
[ 0.728  0.230 ]

95% of variance 
explained by first two 
principal components

Shape of 
compressed data Z



[ 0.22 0.09 0.05 0.04 0.04 
0.03 0.03 0.03 0.02 0.02 ...]
0.952283956204

Eigenfaces

from sklearn.decomposition import PCA
pca = PCA(n_components=200)
eigenfaces = pca.components_
print(pca.explained_variance_ratio_)
print(pca.explained_variance_ratio_.sum())

95% of variance 
explained by first 200 
principal components

57% of variance 
explained by first 10 

principal components

We reduce features of 
250x250 pixel images 

from 62,500 to 200

[ 0.22 0.09 0.05 0.04 0.04 
0.03 0.03 0.03 0.02 0.02 ...]
0.952283956204

Eigenfaces

from sklearn.decomposition import PCA
pca = PCA(n_components=200)
eigenfaces = pca.components_
print(pca.explained_variance_ratio_)
print(pca.explained_variance_ratio_.sum())

95% of variance 
explained by first 200 
principal components

57% of variance 
explained by first 10 

principal components

We reduce features of 
250x250 pixel images 

from 62,500 to 200

[ 0.22 0.09 0.05 0.04 0.04 
0.03 0.03 0.03 0.02 0.02 ...]
0.952283956204

Eigenfaces

from sklearn.decomposition import PCA
pca = PCA(n_components=200)
eigenfaces = pca.components_
print(pca.explained_variance_ratio_)
print(pca.explained_variance_ratio_.sum())

95% of variance 
explained by first 200 
principal components

57% of variance 
explained by first 10 

principal components

We reduce features of 
250x250 pixel images 

from 62,500 to 200
How to choose k

● We want to lose as little information 
as possible, i.e., we want the 
proportion of variance that is 
retained to be as large as possible

● Typically, k is chosen so that 95% or 
99% of the variance in the data is 
retained

● If there are many correlated 
features in the data, often a high 
percentage of the variance can be 
retained while using a small number 
of features, i.e., k much less than d



PCA Summary

● Prior to running a ML algorithm, PCA can be used to reduce the 
number of dimensions in the data. This is helpful, e.g., to speed 
up execution of the ML algorithm.

● Since datasets often have many correlated features, PCA is 
effective in reducing the number of features while retaining most 
of the variance in the data.

● Before performing PCA, feature scaling is critical.

● Principal components aren’t easily interpreted features. 
We’re not using a subset of the original features.
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