
Decision Trees

Classification Problem

0 1

How should we
classify a new shape?

0 1
Classification Problem

isLarge?
Yes
Yes
No
Yes
No
No
Yes
No
Yes
No
Yes
No
Yes
No

isRed?
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

isFilled?
No
Yes
No
No
No
Yes
Yes
Yes
No
No
Yes
Yes
No
No

isCircle?
Yes
Yes
Yes
No
No
Yes
No
No
No
Yes
No
Yes
Yes
No

Class
1
0
1
0
1
0
0
1
1
0
1
0
1
1

Randomly Permute Rows
isLarge?

Yes
No
Yes
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
No

isRed?
No
Yes
No
No
Yes
Yes
No
No
Yes
Yes
Yes
Yes
No
No

isFilled?
Yes
No
No
Yes
No
Yes
No
No
Yes
No
Yes
No
No
Yes

isCircle?
Yes
No
Yes
No
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes

Class
0
1
1
0
1
0
1
1
1
0
1
1
0
0

Training and Test Data
isLarge?

Yes
No
Yes
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
No

isRed?
No
Yes
No
No
Yes
Yes
No
No
Yes
Yes
Yes
Yes
No
No

isFilled?
Yes
No
No
Yes
No
Yes
No
No
Yes
No
Yes
No
No
Yes

isCircle?
Yes
No
Yes
No
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes

Class
0
1
1
0
1
0
1
1
1
0
1
1
0
0

X y

Training data

Test data

Training Data

0 1
Decision Trees
Make a sequence of decisions based on features

isCircle?

isFilled? isRed?

isRed? isLarge?1

0

0

0

1

1 isFilled?0

Y

Y

Y

Y

Y

Y

N

N

N N

N

N

Evaluate Tree on Test Data

isCircle?

isFilled? isRed?

isRed? isLarge?1

0

0

0

1

1 isFilled?0

Y

Y

Y

Y

Y

Y

N

N

N N

N

N

Building a Decision Tree

● The tree should predict labels of training data accurately

● The tree should be compact, so that it generalizes well to
non-training data without overfitting

Bad Algorithm for Building a Tree

● Generate all possible trees and pick the smallest tree that is
consistent with the training data

Good Algorithm for Building a Tree

● Greedily choose “best” feature by which to split training examples
and make this the root node of a (sub)-tree

● Recursively generate subtrees for the split training examples
using remaining features

● Stop when leaves are perfectly classified

How do we determine the greedy choice, i.e.,
“best” feature to use to split training examples?

● The greedy choice feature should aim to minimize the
depth of the tree

● A perfect feature choice divides the examples into
sets, each of which are all 0 or all 1 and thus will be
leaves of the tree

● A poor feature choice divides the examples into sets
with the same proportion of 0 and 1 classes as the
undivided set

Entropy

Entropy is a measure of uncertainty or impurity.

Acquisition of information corresponds to a reduction in entropy.

Minimum impurity Small impurity Large impurity

Entropy
Entropy = -pi log2 pi where pi is the probability of class i

= - (10/10) log2(10/10) +
 - (0/10) log2(0/10)
= 0

Minimum impurity Small impurity Large impurity

iŋ

Entropy = - (10/12) log2(10/12) +
 - (2/12) log2(2/12)
= 0.65

Entropy = - (10/20) log2(10/20) +
 - (10/20) log2(10/20)
= 1

Entropy

Information Gain
The information gain when we divide the data using a particular
feature is the reduction in entropy.

Information Gain = entropy(parent) - [weighted average entropy(children)]

When deciding what feature to test at the root of a tree, we look
at the entropy at the root node (parent) and the entropy at the
children of the root node.

Using different features at the root to split the data will result in
different children with different entropies.

We greedily choose the feature that maximizes information gain

Information Gain (IG) Examples

IG(feature) = entropy(parent) -
 [weighted average entropy(children)]

IG(isLarge?) = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(6/10) * entropy(small examples) +
 (4/10) * entropy(large examples)]

Entropy of parent

Weighted average
entropy of two children

Weights of
two children

Information Gain (IG) Examples

IG(feature) = entropy(parent) -
 [weighted average entropy(children)]

IG(isLarge?) = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(6/10) * entropy(small examples) +
 (4/10) * entropy(large examples)]

 = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(6/10) * (-(2/6)log2(2/6) + -(4/6)log2(4/6)) +
 (4/10) * (-(2/4)log2(2/4) + -(2/4)log2(2/4))]

 ≈ 0.53 + 0.44 -
 [(6/10) * (0.53 + 0.39) +
 (4/10) * (0.5 + 0.5)] ≈ 0.018

Information Gain (IG) Examples

IG(feature) = entropy(parent) -
 [weighted average entropy(children)]

IG(isRed?) = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(5/10) * entropy(blue examples) +
 (5/10) * entropy(red examples)]

 = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(5/10) * (-(2/5)log2(2/5) + -(3/5)log2(3/5)) +
 (5/10) * (-(2/5)log2(2/5) + -(3/5)log2(3/5))]

 ≈ 0.53 + 0.44 -
 [(5/10) * (0.53 + 0.44) +
 (5/10) * (0.53 + 0.44)] ≈ 0.000

Information Gain (IG) Examples

IG(feature) = entropy(parent) -
 [weighted average entropy(children)]

IG(isFilled?) = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(6/10) * entropy(hollow examples) +
 (4/10) * entropy(filled examples)]

 = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(6/10) * (-(1/6)log2(1/6) + -(5/6)log2(5/6)) +
 (4/10) * (-(3/4)log2(3/4) + -(1/4)log2(1/4))]

 ≈ 0.53 + 0.44 -
 [(6/10) * (0.43 + 0.22) +
 (4/10) * (0.31 + 0.50)] ≈ 0.256

Information Gain (IG) Examples

IG(feature) = entropy(parent) -
 [weighted average entropy(children)]

IG(isCircle?) = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(5/10) * entropy(square examples) +
 (5/10) * entropy(circle examples)]

 = -(4/10)log2(4/10) + -(6/10)log2(6/10) -
 [(5/10) * (-(1/5)log2(1/5) + -(4/5)log2(4/5)) +
 (5/10) * (-(3/5)log2(3/5) + -(2/5)log2(2/5))]

 ≈ 0.53 + 0.44 -
 [(5/10) * (0.46 + 0.26) +
 (5/10) * (0.44 + 0.53)] ≈ 0.125

Variations

● What if our features are not binary (e.g., red/blue, small/large, circle/square)
but can take on many discrete values (e.g., red/green/blue/purple/orange,
small/medium/large, circle/triangle/rhombus/square)? What if we have
continuous, real-valued features?

● In our tree building algorithm, to end the recursion we said to “stop when
leaves are perfectly classified.” What if data cannot be perfectly classified?

● Pruning a tree may yield more compact trees that are better predictors on
new data (i.e., less prone to overfitting)

Overfitting
● On some problems, a large tree will be constructed when there is actually no

pattern to be found
● Consider the problem of trying to predict whether the roll of a die will come up 6

or not. Our features are the weather outside when the die was rolled, the name
of the roller, and whether the die landed on a table or the floor.

● If the die is fair, the right thing to learn is a tree with a single node that says “no”
● But our decision tree learning algorithm will seize on any pattern it can find in

the input. If it turns out that there are 2 rolls when Wendy rolled the die on the
floor when it was rainy out, then the algorithm may construct a path that
predicts 6 in that case.

● This problem is called overfitting
● Overfitting becomes more likely as the hypothesis space and the number of

inputs grows, and less likely as we increase the number of training examples

Pros and Cons of Decision Trees
Pros

● Easy to understand how to implement
● Work well in practice for many problems
● Easy to explain model predictions, i.e., interpretable

Cons

● Need to store large tree
● No principled pruning method to avoid overfitting
● Not effective for all problems, e.g., the majority function, which

returns 1 if and only if more than half the inputs are 1, and returns
0 otherwise (requires an exponentially large decision tree)

Ensemble Methods: Bagging

Bagging. Take repeated samples from the training set to generate
many different bootstrapped training sets. Construct a tree for each
bootstrapped training set, creating a collection of trees. To make a
prediction for a new example, take the majority classification prediction
from the bagged collection of trees.

Ensemble Methods: Random Forests

Random Forest. As with bagging, a collection of trees is created from
bootstrapped training samples. With random forests, however, each
time we construct a node in a tree by choosing greedily among the
features, we choose among all features but rather among a randomly
sampled subset of features.

Ensemble Methods: Boosting

Boosting. Trees are learned sequentially. Consecutive trees are based
on the error from the previous tree. When an input is misclassified by a
tree, its weight is increased so that the next tree is more likely to
classify it correctly. Trees are kept small so that the boosting approach
learns slowly. With each subsequent tree, we improve the fit in areas
where the previous tree did not perform well.

Overview ML Algorithms

Supervised
Learning

Unsupervised
Learning

Hierarchical
Clustering

Dimensionality
Reduction

Gaussian
Mixture Models

K-Means

Non-Parametric Parametric

kNN

Support Vector
Machines

Collaborative
Filtering

Regression
Models

Linear
Regression

Linear
Classifiers

Non-Linear
Classifiers

Decision Trees

Perceptron Neural
Networks

Logistic
Regression Hidden Markov

Models

