
k Nearest Neighbors
and Feature Scaling

Nearest Neighbors Algorithm

● Store all the training data as feature vectors

● Prediction for new, test data point: return the label of the closest
training point

(you are the company you keep…)

What is the predicted color for a
new point (-2, -2)? Or for (2, 2)?

k Nearest Neighbors Algorithm

● Choose some integer value of k (say, 3)

● Compute the k closest training points to the test data point

● Return the majority label

What is the predicted color for a
new point (-1.1, 1.7)?

Effect of increasing k:
smoother decision boundaries

Three Classes Choosing k

● k is a free “hyperparameter” of the algorithm. How do we choose it?

● One option: try different values of k when evaluating on test data● One option: try different values of k when evaluating on test data

● Rather than split data into two parts, training and test, we split data
into three parts, training and validation and test.
○ Use the validation data as “pseudo-test data” to tune (choose

best) k
○ Do final evaluation on the test data only once

Distance Measure in 2D

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

Distance Measure in 2D

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

distance(Point 1, Point 2) = |3.8 - 2.6|2 + |5.4 - 2.6|22

Distance Measure in 2D - L2 Norm

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

distance(Point a, Point b) = |a1 - b1|
2 + |a2 - b2|

22

Distance Measure in 2D

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

distance(Point 1, Point 2) = |3.8 - 2.6|1 + |5.4 - 2.6|11

Distance Measure in 2D - L1 Norm

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

distance(Point a, Point b) = |a1 - b1|
1 + |a2 - b2|

1

 = |a1 - b1| + |a2 - b2|

1

Distance Measure in 2D

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

distance(Point 1, Point 2) = |3.8 - 2.6|∞ + |5.4 - 2.6|∞∞

Distance Measure in 2D - L∞ Norm

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

distance(Point a, Point b) = |a1 - b1|
∞ + |a2 - b2|

∞

 = max { |a1 - b1| , |a2 - b2| }

∞

Distance Measure in 2D

Point 1 3.8 5.4

Point 2 2.6 2.6

Point 3 3.1 1.5

Point 4 2.1 0.5

Point 1

Point 2

Point 3

Point 4

Point 2

Distance Measure in 3D

Point 1 3.8 5.4 4.7

Point 2 2.6 2.6 2.6

Point 3 3.1 1.5 2.2

Point 4 2.1 0.5 1.2

Point 1

Point 3

Point 4

Point 2

Distance Measure in 3D

Point 1 3.8 5.4 4.7

Point 2 2.6 2.6 2.6

Point 3 3.1 1.5 2.2

Point 4 2.1 0.5 1.2

Point 1

Point 3

Point 4

distance(Point 1, Point 2) = |3.8 - 2.6|2 + |5.4 - 2.6|2 + |4.7 - 2.6|22

Point 2

Distance Measure in 3D

Point 1 3.8 5.4 4.7

Point 2 2.6 2.6 2.6

Point 3 3.1 1.5 2.2

Point 4 2.1 0.5 1.2

Point 1

Point 3

Point 4

distance(Point a, Point b) = |a1 - b1|
2 + |a2 - b2|

2 + |a3 - b3|
22 2

Distance Measure in High Dimensions

Point 1 3.8 5.4 4.7 5.0 … 4.2

Point 2 2.6 2.6 2.6 2.6 … 2.6

Point 3 3.1 1.5 2.2 1.9 … 2.7

Point 4 2.1 0.5 1.2 0.9 … 1.7

distance(Point a, Point b) = |ai - bi|
2∑

d

i = 1

kNN Complexity

● Given n training examples and d features

● Training step
○ Time: approximately zero; just store the data points
○ Space: size of training data (n x d)

● Testing step (for each test example)
○ Time?

Feature Scaling

GPA
0.0
3.8

Standardized Test Score
1110
1500

Student 1
Student 2

Student 3

Student 1

Student 2

Accept?
0
1

3.9 1300 ?Student 3

0.0 1.0 2.0 3.0 4.0

GPA

1100

1200

1300

1400

1500
Stdzd
Test

Score

Feature Scaling

GPA
0.0
3.8

Standardized Test Score
1110
1500

Student 1
Student 2

Student 3

Student 1

Student 2

Accept?
0
1

3.9 1300 ?Student 3

0.0 1.0 2.0 3.0 4.0

GPA

Stdzd
Test

Score

1100

1200

1300

1400

1500

distance(Student 1, Student 3) = |0.0 - 3.9|2 + |1110 - 1300|22

= 15.21 + 361002

distance(Student 2, Student 3) = |3.8 - 3.9|2 + |1500 - 1300|22

= 0.01 + 400002

Feature Scaling

GPA
0.0
3.8

Standardized Test Score
1110
1500

Student 1
Student 2

Student 3

Student 1

Student 2

Accept?
0
1

3.9 1300 ?Student 3

0 400 800 1200 1600

GPA

Stdzd
Test

Score

0

400

800

1200

1600

distance(Student 1, Student 3) = |0.0 - 3.9|2 + |1110 - 1300|22

= 15.21 + 361002

distance(Student 2, Student 3) = |3.8 - 3.9|2 + |1500 - 1300|22

= 0.01 + 400002

Feature Scaling

● Compute the mean (i.e., average) for each
of the features in the training data and
subtract this mean from each feature value

For each of the 1 ≤ i ≤ n training examples and 1 ≤ j ≤ d features,
we subtract the mean:

where the mean of the j th feature is

● Data will then be centered around zero

Feature Scaling

● Compute the mean (i.e., average) for each
of the features in the training data and
subtract this mean from each feature value

For each of the 1 ≤ i ≤ n training examples and 1 ≤ j ≤ d features,
we subtract the mean:

where the mean of the j th feature is

● Data will then be centered around zero

Feature Scaling

● Compute the standard deviation for each
of the features in the training data and
divide each feature value by this standard
deviation

For each of the 1 ≤ i ≤ n training examples and 1 ≤ j ≤ d features,
we divide by the standard deviation:

where the standard deviation of the j th feature is

● Data will then have comparable scale

Feature Scaling

● Compute the standard deviation for each
of the features in the training data and
divide each feature value by this standard
deviation

For each of the 1 ≤ i ≤ n training examples and 1 ≤ j ≤ d features,
we divide by the standard deviation:

where the standard deviation of the j th feature is

● Data will then have comparable scale

Feature Scaling - Test Data

● When scaling the training data, we store the mean and standard
deviation values that we compute for each feature as part of the scaling
process

For the i th testing example, we scale each of its 1 ≤ j ≤ d features by
subtracting the j th mean (μj) and dividing by the j th standard deviation (σj):

● When given a testing example, we need to make sure that it is on a
comparable scale as the training data. Thus, we scale it using the
stored mean and standard deviation values.

Pros and Cons of kNN
Pros

● Simple and intuitive
● Can be used with multiple classes (not just 2)
● Data do not have to be linearly separable

Cons

● Need to store large full training data
● Test time is SLOOOWW

○ Prefer to pay for expensive training in exchange for fast
prediction

Looking ahead

● kNN is an instance-based classifier: must carry around
training data (waste of space)

● Training easy
● Testing hard

Future methods will be

● Parametric classifiers: compute a small “model” and then
throw away training data

● Training hard
● Testing easy

Looking ahead: linear classifiers

● Training: find a dividing “hyperplane” between two classes
● Testing: check which side of hyperplane the new point falls in

Overview ML Algorithms

Supervised
Learning

Unsupervised
Learning

Hierarchical
Clustering

Dimensionality
Reduction

Gaussian
Mixture Models

K-Means

Non-Parametric Parametric

kNN

Support Vector
Machines

Collaborative
Filtering

Regression
Models

Linear
Regression

Linear
Classifiers

Non-Linear
Classifiers

Decision Trees

Perceptron Neural
Networks

Logistic
Regression Hidden Markov

Models

