k Nearest Neighbors

and Feature Scaling

k Nearest Neighbors Algorithm

e Choose some integer value of k (say, 3)

e Compute the k closest training points to the test data point

e Return the majority label

What is the predicted color for a
new point (-1.1, 1.7)?

Nearest Neighbors Algorithm

e Store all the training data as feature vectors

Prediction for new, test data point: return the label of the closest

training point

(you are the company you keep...)

What is the predicted color for a
new point (-2, -2)? Or for (2, 2)?

Effect of increasing k:

smoother decision boundaries

KNN (k=1)
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Three Classes

KNN (k=5)
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Choosing k

k is a free “hyperparameter” of the algorithm. How do we choose it?

e Rather than split data into two parts, training and test, we split data
into three parts, training and validation and test.
o Use the validation data as “pseudo-test data” to tune (choose
best) k
o Do final evaluation on the test data only once
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Distance Measure in 2D - L2 Norm

A

Point 1
Point 2 26 26
Point 3 31 15
i Point 3
Point 4 21 05 ° oin

Point 2
[ ]

Point 4
[ ]

) ’ _ 2
(Point a, Point b) = ~/|a, - b,|* + |a, - b,|?

Distance Measure in 2D - L1 Norm

Point 1
A °

Point 1
Point 2 26 26
Point 3 31 15
Point 4 21 05 .Poims

Point 2

° Point 4

T
(Point a, Point b) = /|a, - b,|" + [a, - b,|'

= |a1-b1| +|az'b2|

Distance Measure in 2D

Point 1

Point 1
Point 2 26 26
Point 3 31 15
il Point 3
Point 4 21 05 o "

Point 2
[ 2

Point 4
([ ]

(Point 1, Point 2) = /|3.8 - 2.6]" + |5.4 - 2.6|'

Distance Measure in 2D

Point 1

Point 1
Point 2 26 26
Point 3 31 15
Point 4 21 05 .Pomta

Point 2

° Point 4

T

(Point 1, Point 2) = ~7/|3.8 - 2.6 + 5.4 - 2.6|"




Distance Measure in 2D - L Norm
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Distance Measure in 3D
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kNN Complexity

e Training step

e Testing step (for each test example)
o Time?

(Point a, Point b) = \2/|a1 - b2+ a,- b, +|a, - by

e Given n training examples and d features

o Time: approximately zero; just store the data points
o Space: size of training data (n x d)

Distance Measure in High Dimensions
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e Compute the mean (i.e., average) for each
of the features in the training data and
subtract this mean from each feature value ~ “ & #® # w0 & w v w

Weight (in Ibs)

e Compute the mean (i.e., average) for each
of the features in the training data and
subtract this mean from each feature value ™~ & & > & : % 5 =

Weight

For each of the 1 <j < n training examples and 1 < < d features,
we subtract the mean: X = X - K

For each of the 1 < i < n training examples and 1 < j < d features,
we subtract the mean: Xij = X = W

1 1
where the mean of the j " feature is #;=— Z Xij where the mean of the j " feature is #;=— Z Xij
n n

e Data will then be centered around zero e Data will then be centered around zero




Feature Scaling

e Compute the standard deviation for each E
of the features in the training data and 10

divide each feature value by this standard . —
deviation et

For each of the 1 </ < n training examples and 1 < < d features,

we divide by the standard deviation: Xx.. = X / o

ij J

1
where the standard deviation of the j" feature is ;= | — E (x,'/-—,u/-)z
n
1<i<n

e Data will then have comparable scale

Feature Scaling

e Compute the standard deviation for each B! o x,;u;'ffé'
of the features in the training data and S e el
divide each feature value by this standard 3
deviation 27T w7

For each of the 1 </ < n training examples and 1 < < d features,

we divide by the standard deviation: Xx.. = Xij / o;

% 2 (X[,‘/'_/lj)z

1<i<n
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where the standard deviation of the j" feature is 0;=

e Data will then have comparable scale

Feature Scaling - Test Data

e When scaling the training data, we store the mean and standard
deviation values that we compute for each feature as part of the scaling
process

e When given a testing example, we need to make sure thatitis on a
comparable scale as the training data. Thus, we scale it using the
stored mean and standard deviation values.

For the i ™ testing example, we scale each of its 1 < < d features by

Xij = (xi,j_:uj)/aj

subtracting the j"" mean (pj) and dividing by the j" standard deviation (aj.):

Pros and Cons of kNN

Pros

e Simple and intuitive
e Can be used with multiple classes (not just 2)
e Data do not have to be linearly separable

Con

n

o Need to store large full training data
e Testtime is SLOOOWW

o Prefer to pay for expensive training in exchange for fast
prediction




Looking ahead

Testing hard

Future methods will be

KNN is an instance-based classifier: must carry around
training data (waste of space)
Training easy

Parametric classifiers: compute a small “model” and then
throw away training data

Training hard

Testing easy

Looking ahead: linear classifiers

Training: find a dividing “hyperplane” between two classes
Testing: check which side of hyperplane the new point falls in
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