Perceptrons

Linear Classifiers

Training: find a dividing “hyperplane”
between two classes

e Testing: check which side of i
hyperplane the new point falls

There are several algorithms to learn linear classifiers

Basic Linear Classifiers

e Assumes 2 classes of labels (binary classification)
o Will work to recognize if diabetes or not
o Will not work to recognize 10 handwritten digits
o Looking ahead: will see how to “spoof” multi-class classifiers from
binary classifiers

e Assumes a linear decision boundary
o Looking ahead: will see how to manipulate linear classifiers to get
arbitrary decision boundaries

A hyperplane in R" is an n-1 dimensional subspace

Hyperplane

A hyperplane in R' is a point A hyperplane in R? is a line A hyperplane in % is a 2D plane

What is a hyperplane?

Parameterized by a “weight” vector w orthogonal
to the hyperplane, centered at origin

e What is the dimensionality of w
in an n-dimensional space?

e Whatrange is
o The dot product of w with any of the blue points?
o The dot product of w with any of the red points?

Perceptron Motivation

N \
- \\ Cell body)

— \, Synaptic terminals..

Axon By

input o weighted activation
X, — (W, \ sum function

d
$ oot - ’ 1 if lewjxj>0

-1 otherwise

Perceptron Learning Algorithm

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros

1. For each training datapoint x with label y:
If w-x >0 and y = +1, do nothing

If w-x <0 and y = -1, do nothing
fwx<O0andy=+1,w=w+x
fwxz0andy=-1,w=w-x

Each w update
rotates the
hyperplane

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1 4
Training data comes as vectors x and labels y L]

Start with vector w = all zeros Ze °

1. For each training datapoint x with label y:

If w-x >0 and y = +1, do nothing
If w-x <0 and y = -1, do nothing
fwx<O0andy=+1,w=w+x °
fwx20andy=-1,w=w-x 3

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

o

Start with vector w = all zeros 2e °

1. For each training datapoint x with label y: —
e I[fwx>0andy=+1, do nothing w
e Ifwx<0andy=-1, do nothing
o Ifwx<Oandy=+1,w=w+Xx °
o Ifwx=20andy=-1,w=w-x 3

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

Perceptron Algorithm - Condensed Pseudocode

Start with vector w = all zeros
1. For each training datapoint x with label y:

e Ifw-x>0andy,=+1, do nothing
e Ifwx<0andy,=-1, do nothing
e Ify*(w-x)>0,do nothing

o [fwx<Oandy=+1,w=w+Xx
o [fwx=20andy=-1,w=w-Xx
o Ify*(wx)sO,w=w+yx

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

(IS

Start with vector w = all zeros 2e °

1. For each training datapoint x with label y:

e Ifw-x>0andy=+1, do nothing

e Ifwx<0andy=-1, do nothing w
o Ifwx<Oandy=+1,w=w+x °

o Ifwx=0andy=-1,w=w-x 3

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

Perceptron Decision Boundary

https://docs.google.com/file/d/18aRzu9-i3nAHJJ6D2PALdJWXDAt1kPns/preview

What if the hyperplane is not centered at What if the hyperplane is not centered at
the origin?

the origin?

w-x + b = 0 represents a
hyperplane orthogonal to w,
translated by -b / ||w]| in the
direction of w

Perceptron Motlvatl Perceptron Learning Algorithm

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

\\ Cell body
N

\ \ Synaptic terminals _
\

¥

I\
Dendrites™

r

Start with vector w = all zeros
Each w update

1. For each training datapoint x with label y: 'qotatesl the
yperplane

e Ifw-x>0andy=+1, do nothing
e Ifw-x<0andy=-1, do nothing
o Ifwx<Oandy=+1,w=w+Xx
o Ifwx=20andy=-1,w=w-Xx

14 ”[,'\ weighted activation

\ sum function
/’ N — —
X1 — \!\l N /, \

N ,1/>
X, —e (W) 2 1if ZWA +h >0 . , 3 , ,
H ~ Z”""‘*” . output = 2. Repeat step 1 until no more misclassified datapoints, or until num_epochs

-1 otherwise (where the number of epochs is a hyperparameter)

Perceptron Learning Algorithm with bias term

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros, and a bias term b =0
Each w update

rotates the

1. For each training datapoint x with label y: h |
yperplane

If w-x + b >0 and y = +1, do nothing

If w-x + b <0andy=-1, do nothing
fwx+b<0andy=+1,w=w+xandb=b+1
fw-x+b=20andy=-1,w=w-xandb =b-1

Each b update
translates the
hyperplane

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

Perceptron Algorithm with bias term in Action

Perceptron Decision Boundary

Perceptron Algorithm with bias term Condensed

Start with vector w = all zeros, and a bias term b =0
1. For each training datapoint x with label y:

e Ifwx+b>0andy=+1, do nothing
Ifw-x+ b <0andy=-1, do nothing

If y * (w-x + b) > 0, do nothing

o |[fwx+b<Oandy=+1,w=w+xandb =Db+1
fwx+b=20andy=-1,w=w-xandb =b-1
Ify*(wx+b)<0,w=w+yxandb =b+y

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
(where the number of epochs is a hyperparameter)

What happens if we change the order of
the training data?

3 o2 2 o3

Order of data affects
training time!

To be safe, shuffle order
on each epoch.

https://docs.google.com/file/d/1Y-m8WmGZDz7ciKvIFc0zaYN0tVZs0ijT/preview

Perceptron Algorithm - no Linear Boundary

Perceptron Decision Boundary

Recap

e Training
Training data: Perceptron Hyperplane
labeled points x, y Learning parameters
Algorithm w, b
e Testing
Testing data: x -
Learned Dot product. PﬁdICtltqn.
parameters: w, b WX+ b or-

Testing

e Once the perceptron has been trained and the parameters w
and b (i.e., the hyperplane) have been learned, we predict the
class of a new datapoint x by determining which side of the
hyperplane it falls on, i.e., by computing the weighted sum (i.e.,
dot product) followed by the activation function:

1if wx + b >0

predicted class = { 1 il

Complexity of Perceptron

e Training (as a function of n datapoints, d dimensions, and
number of epochs)

o Testing

https://docs.google.com/file/d/1sn662ACxK6uGeQCHLhGRpL-WcEoWmqIB/preview

What does the trained hyperplane give us?
e Most importantly: a classifier to predict labels for new datapoints

e Also indicates which features are most important for each label

- Given dataset of email messages, where each feature is a word and the value
is the number of times a message contains that word
Train perceptron to classify SPAM messages vs non-SPAM (HAM) messages
- Resulting w shows which dimensions (aka features aka words) are most
indicative of SPAM and HAM

SPAM Email

- Given dataset of movie/product/restaurant reviews, where each feature is
a word and the value is the number of times a review uses that word

analysis - Train perceptron to classify sentiment (positive or negative)

- Resulting w shows which dimensions (aka features aka words) are most

indicative of positive or negative sentiment

Sentiment

Danger of Simple Perceptron

e Last few points have
too much influence

e Mayresultina

hyperplane that's “bad”
even if it separates the
training data

Solution 1: Voted Perceptron

e Training: Cache every hyperplane seen during training history,
i.e., store every w and b and the number of times it occurs

e Testing: Given a new point x, have every one of these cached
hyperplanes vote with the number of times it occurs

Problem:
(1) Need to store 1000s of hyperplanes after training
(2) Testing time goes up drastically
N

Solution 2: Averaged Perceptron

Idea:
During training, compute the average hyperplane.
During testing, use this average hyperplane to classify a new point.

e Training: Rather than store every intermediate hyperplane seen
during training (too expensive), instead keep track of a running
sum of each hyperplane, i.e., a running sum of each w and b

u=ut+w

B=B+b

e At the end of training, compute the parameters of the
average hyperplane:

u =u/ (n*epochs)
B =B/ (n*epochs)

e Testing: Given a new point x, use the average hyperplane
(based on u and B) to classify the point

1 ML Algorithms
Overview
[1
Supervised Unsupervised
Learning Learning
[. | —1
Non-Parametric Parametric Hierarchical
Clustering
— I
[[| KM
— isi I -Means
B Regression Linear Non-Linear
Models Classifiers Classifiers | CreEn
— kNN Mixture Models
Linear poreeoron Neural - - -
| | Support Vector Regression P Networks DImensuopahty
Machines Reduction
Logistic
L_| Collaborative Regression Hidden Markov

Filtering

Models

