

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Classification vs. Regression

- Previously, we looked at *classification* problems where we used ML algorithms (e.g., kNN, decision trees, perceptrons) to predict discrete-valued (categorical with no numerical relationship) outputs
- Given email, predict ham or
- Given medical info, predict
- Given tweets, predict positive or negative sentiment
- Given Titanic passenger info,
- predict survival or not Given images of handwritten
- numbers, predict intended digit
- Here, we look at *regression* problems where we use ML algorithms (e.g., linear regression) to predict real-valued outputs
- Given student info, predict exam scores
- Given physical attributes, predict
- Given medical info, predict
- blood pressure Given real estate ad, predict
- housing price Given review text, predict
- numerical rating

Classification vs. Regression

• Previously, we looked at *classification* problems where we used ML algorithms (e.g., kNN, decision trees, perceptrons) to predict discrete-valued (categorical with no numerical relationship) outputs

• Here, we look at *regression* problems where we use ML algorithms (e.g., linear regression) to predict real-valued outputs

Cost Function: Mean Squared Error

Objective: of all possible lines, find the one that *minimizes* the distance between the predicted y values (on the line) and the true y values

Cost Function: Mean Squared Error

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^{2}$$

Objective: of all possible lines, find between the predicted y values (on the line) and the true y values

Objective: of all possible lines, find the one that *minimizes* the distance between the predicted
$$y$$
 values (on the line) and the true variables.
$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} \left((w_0 + w_1 x^{(i)}) - y^{(i)} \right)^2$$

Cost Function: Mean Squared Error

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^{2}$$

Objective: of all possible lines, find between the predicted y values (on the line) and the true y values

Objective: of all possible lines, find the one that *minimizes* the distance between the predicted
$$y$$
 values (on the line) and the true varieties.

In other words, find w_0 and w_1 that minimize the cost function J(w) for our n training examples

Cost Function (Simplified Example: $w_0=0$)

- As a simplification for the moment, let's set w₀ to be zero
- This means that our line will pass through the origin
- Our hypothesis is then $h(x) = 0 + w_1 x = w_1 x$
- Our cost function is then $J(w_1) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{(i)}) y^{(i)})^2$

$$J(w_1) = \frac{1}{2n} \sum_{i=1}^{n} ((w_1 x^{(i)}) - y^{(i)})^2$$

• Our goal is to find w_1 that minimizes $J(w_1)$

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Gradient Descent

We want to find the line that best fits the data, i.e., we want to find w_0 and w_1 that minimize the cost, $J(w_0, w_1)$

Gradient Descent Algorithm

- Start with some w₀ and w₁ (e.g., $w_0 = 0$ and $w_1 = 0$)
- Keep changing w_0 and w_1 to reduce the cost $J(w_0, w_1)$ until hopefully we end up at a minimum

Gradient Descent (Simplified Example: $w_0=0$)

We want to find the line (passing through the origin) that best fits the data, i.e., we want to find w_1 that minimizes the cost, $J(w_1)$

Gradient Descent Algorithm

- Start with some w_1 (e.g., w_1 = 0)
- Keep changing w₁ to reduce the cost $J(w_1)$ until hopefully we end up at a minimum

Gradient Descent Algorithm

Repeat until convergence:

$$w_0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1)$$

$$w_1 = w_1 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$$

$$w_1 = w_1 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$$

Gradient Descent Algorithm Repeat until convergence: $w_0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1)$ $w_1 = w_0 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$ α is the step size or learning rate $\alpha = \frac{\partial}{\partial w_1} J(w_0, w_1)$

Gradient Descent Algorithm

$$\frac{\partial}{\partial w_1}J(w_0,w_1)$$

Repeat until convergence:

$$w_0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1)$$

$$w_1 = w_1 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$$

$$= \frac{\partial}{\partial w_1} \frac{1}{2n} \sum_{i=1}^n (h(x^{(i)}) - y^{(i)})^2$$
$$= \frac{\partial}{\partial w_1} \frac{1}{2n} \sum_{i=1}^n ((w_0 + w_1 x^{(i)}) - y^{(i)})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} ((w_0 + w_1 x^{(i)}) - y^{(i)}) x^{(i)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)}) x^{(i)}$$

Gradient Descent Algorithm

Initialize:

$$w_0 = 0 \qquad w_1 = 0$$

Repeat until convergence:

$$w_0 = w_0 - \alpha \frac{1}{n} \sum_{i=1}^{n} ((w_0 + w_1 x^{(i)}) - y^{(i)})$$

$$w_1 = w_1 - \alpha \frac{1}{n} \sum_{i=1}^n ((w_0 + w_1 x^{(i)}) - y^{(i)}) x^{(i)}$$

Gradient Descent Algorithm

Initialize:

$$w_0 = 0 \qquad w_1 = 0$$

Repeat until convergence:

$$w_{0} = w_{0} - \alpha \frac{1}{n} \sum_{i=1}^{n} ((w_{0} + w_{1}x^{(i)}) - y^{(i)})$$

$$w_{1} = w_{1} - \alpha \frac{1}{n} \sum_{i=1}^{n} ((w_{0} + w_{1}x^{(i)}) - y^{(i)})x^{(i)}$$

$$w_1 = w_1 - \alpha \frac{1}{n} \sum_{i=1}^{n} ((w_0 + w_1 x^{(i)}) - y^{(i)}) x^{(i)}$$

With batch gradient descent, we consider all data points each time we update a weight

Gradient Descent Algorithm

Initialize:

$$w_0 = 0 \qquad w_1 = 0$$

Repeat until convergence, iterating over each data point (x, y):

$$w_0 = w_0 - \alpha((w_0 + w_1 x) - y)$$

$$w_1 = w_1 - \alpha((w_0 + w_1 x) - y)x$$

With stochastic gradient descent, we consider a single data point each time we update a weight parameter

- Univariate linear regression
- Gradient descent
- (Multivariate linear regression)
- Polynomial regression
- Regularization

Multivariate Linear Regression Feature Vectors Real Valued Labels Size Number Lot Age (feet2) (feet2) (years) bedrooms 1960 3 19,000 12 841,075.25 10,700 590,999.99 1250 3 65 2 12,035 41 210,500.86 2900 15,431 23 600,000.00

Multivariate Linear Regression

Suppose we have *d* features, then our hypothesis is given by:

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

To simplify our notation, we define a new feature x_0 that always has the value of 1. Then we can write our hypothesis as:

$$h(\mathbf{x}) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

$$h(x) = w \cdot x$$

$$h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_d \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{bmatrix}$$

Multivariate Linear Regression

Univariate
$$(d = 1)$$

Hypothesis:
$$h(\mathbf{x}) = w_0 + w_1 x$$

Cost function:
$$J(w_0, w_1) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^2$$

Gradient descent (repeated update):

$$w_0 = w_0 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})$$

$$w_1 = w_1 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)}) x^{(i)}$$

Multivariate ($d \ge 1$)

Hypothesis:
$$h(x) = w \cdot x$$

Cost function:
$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^2$$

Gradient descent (repeated update):

$$w_0 = w_0 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$w_1 = w_1 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$w_d = w_d - \alpha \frac{1}{n} \sum_{i=1}^n (h(x^{(i)}) - y^{(i)}) x_d^{(i)}$$

Feature Scaling

Feature Vectors X				Real Valued Labels y	
<i>x</i> ₁	x ₂	x ₃	X ₄	I	/
Size (feet ²)	Number bedrooms	Lot (feet ²)	Age (years)		
1960	3	19,000	12	841,075.25	
1250	3	10,700	65	590,999.99	
960	2	12,035	41	210,500.86	
2900	5	15,431	23	600,000.00	

- Features may have very different ranges!
- Don't forget to perform subtract each feature's mean and divide by each feature's standard deviation.
- Then features will have the same scale.

Outline

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Addressing Overfitting

 x_1 = size of house

 x_2 = number of bedrooms

 $x_3 = \text{lot size}$

 x_{4} = age of house

 x_{ϵ} = parking spaces

 $x_{\rm g}$ = distance to schools

 x_7 = neighborhood crime rate

X_d

To address overfitting:

- Reduce the number of features
- Regularization. Keep all the features but reduce the magnitude/values of parameters w.

Regularization

$$W_0 + W_1 x + W_2 x^2 + W_3 x^3 + W_4 x^4$$

Suppose we penalize $\textit{w}_{\textit{3}}$ and $\textit{w}_{\textit{4}}$ in order to make them very small.

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^2 + 1,000,000w_3 + 1,000,000w_4$$

 $w_3 \approx 0$ $w_4 \approx 0$

Regularization

- Smaller values for the parameters w₁, w₂, w₃, ..., w_d lead to simpler hypotheses that are less prone to overfitting.
- We modify our cost function so that it not only
 - (1) finds a good fitting hypothesis (penalizes error of hypothesis on training data)

but also

(2) considers the complexity of the hypothesis (penalizing more complex hypotheses and favoring simpler hypotheses)

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{d} w_j^2 \right]$$

λ is regularization parameter

Gradient Descent $w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w})$

Linear Regression

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} \left(\frac{1}{2n} \sum_{i=1}^n (h(x^{(i)}) - y^{(i)})^2 \right) \qquad w_j = w_j - \alpha \frac{1}{n} \sum_{i=1}^n (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Regularized Linear Regression

$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} \left(\frac{1}{2n} \left(\sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{d} w_{j}^{2} \right) \right)$$

$$w_{j} = w_{j} - \alpha \frac{1}{n} \left(\sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \lambda w_{j} \right)$$

$$w_{j} = w_{j} \left(1 - \alpha \frac{\lambda}{n} \right) - \alpha \frac{1}{n} \sum_{j=1}^{n} (h(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$