
Linear Regression

Outline

● Univariate linear regression

● Gradient descent

● Multivariate linear regression

● Polynomial regression

● Regularization

Classification vs. Regression
● Previously, we looked at classification problems 

where we used ML algorithms (e.g., kNN, decision 
trees, perceptrons) to predict discrete-valued 
(categorical with no numerical relationship) outputs

● Here, we look at regression problems 
where we use ML algorithms (e.g., linear 
regression) to predict real-valued outputs

● Given email, predict ham or 
spam

● Given medical info, predict 
diabetes or not

● Given tweets, predict positive or 
negative sentiment

● Given Titanic passenger info, 
predict survival or not

● Given images of handwritten 
numbers, predict intended digit

● Given student info, predict exam 
scores

● Given physical attributes, predict 
age

● Given medical info, predict 
blood pressure

● Given real estate ad, predict 
housing price

● Given review text, predict 
numerical rating

Classification vs. Regression
● Previously, we looked at classification problems 

where we used ML algorithms (e.g., kNN, decision 
trees, perceptrons) to predict discrete-valued 
(categorical with no numerical relationship) outputs

● Here, we look at regression problems 
where we use ML algorithms (e.g., linear 
regression) to predict real-valued outputs



Linear Regression (fitting a straight line)
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Univariate Linear Regression
Feature 
Vectors 

X

Real Valued 
Labels 

y

1960

1250

960

2900

...

841,075.25

590,999.99

210,500.86

600,000.00

...

1700

$625k

Hypothesis Function

● Our hypothesis function h maps x’s to 
predicted y values

● For now, we’ll predict that y is a linear 
function of x:

With perceptrons, we 
named our bias term b. 

Here we name our 
intercept term w0.

Sometimes the 
“weight” parameters 
are named theta, ϴ, 

rather than w

h(x) = w0 + w1x

h(x) = 200,000 + 250x

Predicted Label Data Point



Cost Function:
Mean Squared Error
Objective: of all possible lines, find 
the one that minimizes the distance 
between the predicted y values (on 
the line) and the true y values

h(x) = 620,000 + 0x h(x) = -450,000 + 500xh(x) = 200,000 + 250x

Cost Function:
Mean Squared Error
Objective: of all possible lines, find 
the one that minimizes the distance 
between the predicted y values (on 
the line) and the true y values

h(x) = 620,000 + 0x h(x) = -450,000 + 500xh(x) = 200,000 + 250x

Cost Function:
Mean Squared Error
Objective: of all possible lines, find 
the one that minimizes the distance 
between the predicted y values (on 
the line) and the true y values

In other words, find w0 and w1 that minimize the 
cost function J(w) for our n training examples

Cost Function 
(Simplified Example: w0=0)

● As a simplification for the moment, let’s set w0 to be zero

● This means that our line will pass through the origin

● Our hypothesis is then h(x) = 0 + w1x = w1x

● Our cost function is then 

● Our goal is to find w1 that minimizes J(w1)

h(x)



Cost Function 
(Simplified Example: w0=0)

Let’s consider the cost 
associated with different 

values of w1

Suppose we have the following 
three training data points

Cost Function 
(Simplified Example: w0=0)

w1 = 1

h(x) = 0 + 1x

Let’s consider the cost 
associated with different 

values of w1

Suppose we have the following 
three training data points

Cost Function 
(Simplified Example: w0=0)

w1 = 0.5

h(x) = 0 + 0.5x

Let’s consider the cost 
associated with different 

values of w1

Suppose we have the following 
three training data points

Cost Function 
(Simplified Example: w0=0)

w1 = 0

h(x) = 0 + 0x

Let’s consider the cost 
associated with different 

values of w1

Suppose we have the following 
three training data points



Cost Function 
(Simplified Example: w0=0)

w1 = 2

h(x) = 0 + 2x

Let’s consider the cost 
associated with different 

values of w1

Suppose we have the following 
three training data points

Cost Function 
(Simplified Example: w0=0)

Let’s consider the cost 
associated with different 

values of w1

Suppose we have the following 
three training data points

Cost Function: Two parameters (w0, w1) Cost Function: Two parameters (w0, w1)

https://docs.google.com/file/d/1g3nQs5I2ymbPkWy-Y3D6DVFKis9kaIqe/preview


Cost Function: Two parameters (w0, w1)

Data and Hypothesis Cost Function

Cost Function: Two parameters (w0, w1)

Data and Hypothesis Cost Function

Cost Function: Two parameters (w0, w1)

Data and Hypothesis Cost Function

Cost Function: Two parameters (w0, w1)

Data and Hypothesis Cost Function
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● Univariate linear regression

● Gradient descent

● Multivariate linear regression

● Polynomial regression

● Regularization

Gradient Descent
We want to find the line that best fits the data, i.e., we want to find w0 and w1 
that minimize the cost, J(w0, w1)

● Start with some w0 and w1 
(e.g., w0 = 0 and w1 = 0)

● Keep changing w0 and w1 
to reduce the cost J(w0, w1) 
until hopefully we end up at 
a minimum

Gradient Descent Algorithm

Gradient Descent (Simplified Example: w0=0)
We want to find the line (passing through the origin) that best fits the data, 
i.e., we want to find w1 that minimizes the cost, J(w1)

● Start with some w1 (e.g., w1 = 0)

● Keep changing w1 to 
reduce the cost J(w1) until 
hopefully we end up at a 
minimum

Gradient Descent Algorithm

Gradient Descent Algorithm

Repeat until convergence:



Gradient Descent Algorithm

Repeat until convergence:

𝛂 is the step size or 
learning rate

Gradient Descent Algorithm

Repeat until convergence:

The partial derivative 
indicates the slope, i.e., 

the direction to step

positive 
slopenegative 

slope

Gradient Descent Algorithm

Repeat until convergence:

Execute two updates in 
parallel rather than 

sequentially

Gradient Descent Algorithm

Repeat until convergence:



Gradient Descent Algorithm

Repeat until convergence:

Gradient Descent 
Algorithm

Repeat until convergence:

Initialize:

Gradient Descent 
Algorithm

Repeat until convergence:

Initialize:

With batch gradient 
descent, we consider all 

data points each time 
we update a weight 

parameter

Gradient Descent 
Algorithm

Initialize:

With stochastic gradient 
descent, we consider 

a single data point each 
time we update a weight 

parameter

Repeat until convergence, 
iterating over each data point (x, y):
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● Univariate linear regression

● Gradient descent

● Multivariate linear regression

● Polynomial regression

● Regularization

Univariate Linear Regression
Feature 
Vectors 

X

Real Valued 
Labels 

y

1960

1250

960

2900

...

841,075.25

590,999.99

210,500.86

600,000.00

...

h(x) = w0 + w1x

Multivariate Linear Regression
Feature Vectors 

X
Real Valued Labels 

y

1960

1250

960

2900

...

841,075.25

590,999.99

210,500.86

600,000.00

...

h(x) = w0 + w1x1 + w2x2 +
w3x3 + w4x4

3

3

2

5

...

19,000

10,700

12,035

15,431

...

12

65

41

23

...

Size
(feet2)

Number 
bedrooms

Lot
(feet2)

Age
(years)

x1 x2 x3 x4

Multivariate Linear Regression

h(x) = w0 + w1x1 + w2x2 + … + wdxd

Suppose we have d features, then our hypothesis is given by:

To simplify our notation, we define a new feature x0 that always has the 
value of 1. Then we can write our hypothesis as:

h(x) = w0x0 + w1x1 + w2x2 + … + wdxd

h(x) = w ∙ x

h(x) = wT x

where w and x are d+1 
dimensional vectors

w0
w1
w2
…
wd

w =

x0
x1
x2
…
xd

x =



Multivariate Linear Regression
Univariate (d = 1)

Hypothesis: h(x) = w0 + w1x

Cost function:

Gradient descent (repeated update):

Multivariate (d ≥ 1)

Hypothesis:

Gradient descent (repeated update):

h(x) = w ∙ x

Cost function:

. . .

Feature Scaling
Feature Vectors 

X
Real Valued Labels 

y

1960

1250

960

2900

...

841,075.25

590,999.99

210,500.86

600,000.00

...

3

3

2

5

...

19,000

10,700

12,035

15,431

...

12

65

41

23

...

Size
(feet2)

Number 
bedrooms

Lot
(feet2)

Age
(years)

x1 x2 x3 x4

● Features may have very 
different ranges!

● Don’t forget to perform 
feature scaling, e.g., 
subtract each feature’s 
mean and divide by 
each feature’s standard 
deviation. 

● Then features will have 
the same scale. 

Outline

● Univariate linear regression

● Gradient descent

● Multivariate linear regression

● Polynomial regression

● Regularization

Polynomial Regression



Polynomial Regression Polynomial Regression

Feature Vectors 
X

Real Valued Labels 
y

1.9x103

1.2x103

0.9x103

2.9x103

...

841,075.25

590,999.99

210,500.86

600,000.00

...

Size

x1

h(x) = w0 + w1x1

h(x) = w0 + w1(Size)

x1 = (Size)

Polynomial Regression

Feature Vectors 
X

Real Valued Labels 
y

1.9x103

1.2x103

0.9x103

2.9x103

...

841,075.25

590,999.99

210,500.86

600,000.00

...

Size

x1 x2

Size2

3.8x106

1.5x106

0.9x106

8.4x106

...

h(x) = w0 + w1x1 + w2x2

h(x) = w0 + w1(Size) + w2(Size)2

x1 = (Size)

x2 = (Size)2
Polynomial Regression

Feature Vectors 
X

Real Valued Labels 
y

1.9x103

1.2x103

0.9x103

2.9x103

...

841,075.25

590,999.99

210,500.86

600,000.00

...

Size

x1 x2 x3

Size2 Size3

3.8x106

1.5x106

0.9x106

8.4x106

...

7.5x109

1.9x109

0.8x109

24.3x109

...

h(x) = w0 + w1x1 + w2x2 + w3x3

h(x) = w0 + w1(Size) + w2(Size)2 + w3(Size)3

x1 = (Size)

x2 = (Size)2

x3 = (Size)3
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● Gradient descent

● Multivariate linear regression

● Polynomial regression

● Regularization

Overfitting
w0 + w1x

w0 + w1x + w2x
2

w0 + w1x + w2x
2 + w3x

3 + w4x
4

Underfit

Overfit

Overfitting may occur 
when we have too many 
features and the learned 
hypothesis fits the 
training data very well 
but fails to generalize to 
new examples.

Addressing Overfitting

x1 = size of house
x2 = number of bedrooms
x3 = lot size
x4 = age of house
x5 = parking spaces
x6 = distance to schools
x7 = neighborhood crime rate
…
xd 

To address overfitting:

● Reduce the number of features

● Regularization. Keep all the features but 
reduce the magnitude/values of 
parameters w.

Regularization

w0 + w1x + w2x
2 w0 + w1x + w2x

2 + w3x
3 + w4x

4

Suppose we penalize w3 and w4 in order to make them very small.
w3 ≈ 0

w4 ≈ 0



Regularization
● Smaller values for the parameters w1, w2, w3, …, wd lead to 

simpler hypotheses that are less prone to overfitting.

● We modify our cost function so that it not only 

(1) finds a good fitting hypothesis (penalizes error of hypothesis 
on training data)

(2) considers the complexity of the hypothesis (penalizing more 
complex hypotheses and favoring simpler hypotheses)

but also 

is
regularization 

parameter

Gradient Descent

Linear Regression

Regularized Linear Regression

Overview ML Algorithms

Supervised 
Learning

Unsupervised 
Learning

Hierarchical 
Clustering

Dimensionality 
Reduction

Gaussian 
Mixture Models

K-Means

Non-Parametric Parametric

kNN

Support Vector 
Machines

Collaborative 
Filtering

Regression 
Models

Linear 
Regression

Linear 
Classifiers

Non-Linear 
Classifiers

Decision Trees

Perceptron Neural 
Networks

Logistic 
Regression Hidden Markov 

Models


