
Recommender Systems

Top Picks for You



How might my 
ratings change my 
recommendations?

Goals of Recommender Systems

● Show content that we’re interested in

● Suggest new content that would interest us

● Suggest new content that is generally popular

● Adjust recommendations based on our feedback

$1M winning 
algorithm not 
actually used 
by Netflix

Researchers were able to de-anonymize data by 
comparing with IMDB ratings, resulting in a lawsuit



Recommender Systems

● What makes two (Amazon) users similar?
➢ Purchased the same set of items

➢ Liked and disliked the same set of items

● What makes two items similar?
➢ The same set of users purchased/liked them

➢ Their titles, description, prices, other metadata

Collaborative Filtering

Content Based Recommendation
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Similarity: Jaccard

● Measure similarity between a pair of user vectors 
(or a pair of item vectors)

UA = [1, 0, 1, 0]

UB = [0, 0, 1, 0]

Jaccard(UA, UB) = 
| UA ∩ UB | 

| UA ∪ UB | 

When is 
result 0? 

When is it 1?

Problem: 
does not work 
for non-binary 

vectors

Similarity: Cosine

● Measure similarity between a pair of user vectors 
(or a pair of item vectors)

UA = [0, 5, 2, 0]

UB = [1, 0, 4, 2]

CosineSim(UA, UB) = 
 UA ⋅ UB  

||UA|| ||UB|| 

When is 
result 0? 

When is it 1?

User-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: UA, IP
● Among users that have rated IP, select a set SK of 

the K most similar users to UA

● Predicted rating for UA, IP is average rating of IP 
from users in SK:

User-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: UA, IP
● Some users have a tendency to be more or less 

generous
● Use deviation from a user’s average rating, rather 

than a user’s absolute rating



Item-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: UA, IP
● Among items that have been rated by UA, select a 

set SK of the K most similar items to IP
● Predicted rating for UA, IP is average rating of UA 

from items in SK:

Item-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: UA, IP
● Among all items that have been rated by UA, 

compute weighted average of UA’s ratings 
(weighted by similarity to IP)

Weighted Average
Compute final score 
in some class:

Class participation
Homework
Midterm Exam
Final Exam

60%
95%
50%
87%

50 points
200 points
100 points
150 points

Score Weight

Mean is 73%

Weighted Mean is 80%
Problems with Collaborative Filtering?

● If user-item matrix is too sparse, may not be useful

● “Cold-start problem”: how to handle new users 
and items?

● Won’t encourage diverse results 
(echo chamber effect)



Content-Based Recommendations: Approach 1

● Define similarity between users (or similarity 
between items) in terms of content features, not 
rating patterns

● Apply same methods as for collaborative filtering

➢ Examples of item features: restaurant cuisine type, director or 
actors in movie, product details

➢ Examples of user features: demographic information

Content-Based Recommendations: Approach 2

● Featurize users and items under the same set of 
features

● Compute similarity between a given user and item

➢ Features: words
○ user feature values = word counts in reviews
○ item feature values = word counts in descriptions

➢ Features: demographics
○ user feature values = demographic info
○ item feature values = target demographics

Featurizing Text
● Bag of words: tokenizing, counting, tf-idf weighting
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● N-Grams
Fast service but bland food.
Good fast food.
No service, no parking, no good.
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Evaluation
● Task Type A: Given test set of (user, item) pairs, 

predict ratings
➢ Raw accuracy, e.g., percentage of ratings predicted exactly

● Task Type B: Given test set of users, 
predict set of items to recommend

➢ Root mean squared error (RMSE)

➢ Precision, Recall, F1 Score

Too strict!

TP: Recommended items
       user actually buys
FP: Recommended items 
       user does not buy
TN: Items not recommended 
       and user does not buy
FN: Items not recommended 
       and user buys



Vectorization (Array Programming)

● Many scientific and numerical computing libraries, 
such as NumPy in Python, provide vectorized 
operations, i.e., operations that can be applied to an 
entire array (matrix) 

● Whenever possible, it is usually a good idea to use 
vectorization rather than looping through an array 
and applying an operation to each element

np.random.randint(...)

np.sum(a)
np.mean(a)

np.median(a)

np.dot(a,b)
np.ones(...)

a[a>10]

a**2

Overview ML Algorithms

Supervised 
Learning

Unsupervised 
Learning

Hierarchical 
Clustering

Dimensionality 
Reduction

Gaussian 
Mixture Models

K-Means

Non-Parametric Parametric

kNN

Support Vector 
Machines

Collaborative 
Filtering

Regression 
Models

Linear 
Regression

Linear 
Classifiers

Non-Linear 
Classifiers

Decision Trees

Perceptron Neural 
Networks

Logistic 
Regression Hidden Markov 

Models


