Introduction to Racket, a dialect of LISP: Expressions and Declarations

LISP: designed by John McCarthy, 1958 published 1960

LISP: implemented by Steve Russell, early 1960s

LISP: LISt Processing

- McCarthy, MIT artificial intelligence, 1950s-60s
 - Advice Taker: represent logic as data, not just program

- Needed a language for:
 - Symbolic computation
 - Programming with logic
 - Artificial intelligence
 - Experimental programming

- So make one!
Scheme

- Gerald Jay Sussman and Guy Lewis Steele (mid 1970s)
- Lexically-scoped dialect of LISP that arose from trying to make an “actor” language.
- Described in amazing “Lambda the Ultimate” papers (http://library.readscheme.org/page1.html)
 - Lambda the Ultimate PL blog inspired by these: http://lambda-the-ultimate.org
- Led to Structure and Interpretation of Computer Programs (SICP) and MIT 6.001 (https://mitpress.mit.edu/sicp/)

Racket

- Grandchild of LISP (variant of Scheme)
 - Some changes/improvements, quite similar
- Developed by the PLT group (https://racket-lang.org/people.html), the same folks who created DrJava.
- Why study Racket in CS251?
 - Clean slate, unfamiliar
 - Careful study of PL foundations (“PL mindset”)
 - Functional programming paradigm
 - Emphasis on functions and their composition
 - Immutable data (lists)
 - Beauty of minimalism
 - Observe design constraints/historical context

Expressions, Values, and Declarations

- Entire language: these three things

Expressions have *evaluation rules*:
 - How to determine the value denoted by an expression.

For each structure we add to the language:
 - What is its *syntax*? How is it written?
 - What is its *evaluation rule*? How is it evaluated to a value (expression that cannot be evaluated further)?

Values

- Values are expressions that cannot be evaluated further.

- Syntax:
 - Numbers: 251, 240, 301
 - Booleans: #t, #f
 - There are more values we will meet soon (strings, symbols, lists, functions, …)

- Evaluation rule:
 - Values evaluate to themselves.
Addition expression: syntax

Add two numbers together.

Syntax: \((+ \ E_1 \ E_2)\)
Every parenthesis required; none may be omitted.
\(E_1\) and \(E_2\) stand in for any expression.
Note prefix notation.

Examples:
\((+ 251 \ 240)\)
\((+ (+ 251 \ 240) \ 301)\)
\((+ \ #t \ 251)\)

Addition expression: evaluation

Syntax: \((+ \ E_1 \ E_2)\)

Evaluation rule:
1. Evaluate \(E_1\) to a value \(V_1\)
2. Evaluate \(E_2\) to a value \(V_2\)
3. Return the arithmetic sum of \(V_1 + V_2\).

Not quite!

Addition: dynamic type checking

Syntax: \((+ \ E_1 \ E_2)\)

Evaluation rule:
1. evaluate \(E_1\) to a value \(V_1\)
2. Evaluate \(E_2\) to a value \(V_2\)
3. If \(V_1\) and \(V_2\) are both numbers then return the arithmetic sum of \(V_1 + V_2\).
4. Otherwise, a type error occurs.

Dynamic type-checking

Evaluation Assertions Formalize Evaluation

The evaluation assertion notation \(E \Downarrow V\) means \"E evaluates to V\".

Our evaluation rules so far:
• value rule: \(V \Downarrow V\) (where \(V\) is a number or boolean)
• addition rule:
 \[
 \text{if } E_1 \Downarrow V_1 \text{ and } E_2 \Downarrow V_2 \\
 \text{and } V_1 \text{ and } V_2 \text{ are both numbers} \\
 \text{and } V \text{ is the sum of } V_1 \text{ and } V_2 \\
 \text{then } (+ \ E_1 \ E_2) \Downarrow V
 \]

Still not quite! More later ...
Evaluation Derivation in English

An evaluation derivation is a "proof" that an expression evaluates to a value using the evaluation rules.

\[(+ \, 3 \, (+ \, 5 \, 4)) \downarrow 12\] by the addition rule because:

- \[3 \downarrow 3\] by the value rule
- \[(+ \, 5 \, 4) \downarrow 9\] by the addition rule because:
 - \[5 \downarrow 5\] by the value rule
 - \[4 \downarrow 4\] by the value rule
 - \[5 \text{ and } 4 \text{ are both numbers}\]
 - \[9 \text{ is the sum of } 5 \text{ and } 4\]
- \[3 \text{ and } 9 \text{ are both numbers}\]
- \[12 \text{ is the sum of } 3 \text{ and } 9\]

More Compact Derivation Notation

\[V \downarrow V\] [value rule]

where \(V\) is a value (number, boolean, etc.)

\[E_1 \downarrow V_1\]
\[E_2 \downarrow V_2\] [addition rule]

(+ \(E_1\) \(E_2\)) \downarrow V

side conditions of rules

Where \(V_1\) and \(V_2\) are numbers and \(V\) is the sum of \(V_1\) and \(V_2\).

Errors Are Modeled by “Stuck” Derivations

How to evaluate

\[(+ \, \#t \, (+ \, 5 \, 4))\]?

\[\#t \downarrow \#t\] [value]
\[5 \downarrow 5\] [value]
\[4 \downarrow 4\] [value]
\[(+ \, 5 \, 4) \downarrow 9\]

Stuck here. Can’t apply (addition) rule because \#t is not a number in (+ #t 9)

How to evaluate

\[(+ \, 3 \, (+ \, 5 \, \#f))\]?

\[1 \downarrow 1\] [value]
\[2 \downarrow 2\] [value]
\[(+ \, 1 \, 2) \downarrow 3\] [addition]
\[5 \downarrow 5\] [value]
\[\#f \downarrow \#f\] [value]

Stuck here. Can’t apply (addition) rule because \#f is not a number in (+ 5 #f)

Syntactic Sugar for Addition

The addition operator + can take any number of operands.

- For now, treat \((+ \, E_1 \, E_2 \, \ldots \, E_n)\) as \((+ \, (+ \, E_1 \, E_2) \, \ldots \, E_n)\)
 E.g., treat \((+ \, 7 \, 2 \, -5 \, 8)\) as \((+ \, (+ \, (+ \, 7 \, 2) \, -5) \, 8)\)
- Treat \((+ \, E)\) as \(E\) (or say if \(E \downarrow V\) then \((+ \, E) \downarrow V)\)
- Treat \((+ \, \ldots)\) as 0 (or say \((+ \ldots) \downarrow 0)\)
- This approach is known as syntactic sugar: introduce new syntactic forms that “desugar” into existing ones.
- In this case, an alternative approach would be to introduce more complex evaluation rules when + has a number of arguments different from 2.
Other Arithmetic Operators

Similar syntax and evaluation for:
- * / quotient remainder min max

except:
- Second argument of /, quotient, remainder must be nonzero
- Result of / is a rational number (fraction) when both values are integers. (It is a floating point number if at least one value is a float.)
- quotient and remainder take exactly two arguments; anything else is an error.
- (- E) is treated as (- 0 E)
- (/ E) is treated as (/ 1 E)
- (min E) and (max E) treated as E
- (*) evaluates to 1.
- (/), (-), (min), (max) are errors (i.e., stuck)

Relation Operators

The following relational operators on numbers return booleans: < <= = >= >

For example:

\[
\begin{array}{c}
E1 \downarrow V1 \\
E2 \downarrow V2 \\
(< E1 E2) \downarrow V
\end{array}
\]

[less than]

Where \(V1 \) and \(V2 \) are numbers and \(V \) is #t if \(V1 \) is less than \(V2 \) or #f if \(V1 \) is not less than \(V2 \)

Conditional (if) expressions

Syntax: \((if \text{ Etest Ethen Eelse})\)

Evaluation rule:
1. Evaluate \(\text{Etest} \) to a value \(V\text{test} \).
2. If \(V\text{test} \) is not the value #f then
 return the result of evaluating \(\text{Ethen} \)
 otherwise
 return the result of evaluating \(\text{Eelse} \)

Derivation-style rules for Conditionals

\[
\begin{array}{c}
\text{Etest} \downarrow V\text{test} \\
\text{Ethen} \downarrow V\text{then} \\
(if \text{ Etest Ethen Eelse}) \downarrow V\text{then}
\end{array}
\]

[if nonfalse]

Where \(V\text{test} \) is not #f

\[
\begin{array}{c}
\text{Etest} \downarrow #f \\
\text{Eelse} \downarrow V\text{else} \\
(if \text{ Etest Ethen Eelse}) \downarrow V\text{else}
\end{array}
\]

[if false]

\(\text{Eelse} \) is not evaluated!

\(\text{Ethen} \) is not evaluated!
Your turn

Use evaluation derivations to evaluate the following expressions

\[
\text{(if (< 8 2) (+ #f 5) (+ 3 4))}
\]

\[
\text{(if (+ 1 2) (- 3 7) (/ 9 0))}
\]

\[
\text{(+ (if (< 1 2) (* 3 4) (/ 5 6)) 7)}
\]

\[
\text{(+ (if 1 2 3) #t)}
\]
Environments: Motivation

Want to be able to name values so can refer to them later by name. E.g.;

```
(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))
(if test (+ (* x y) diff) 17)
```

Environments: Definition

- An **environment** is a sequence of bindings that associate identifiers (variable names) with values.
 - Concrete example:
    ```
    num ⟹ 17, absoluteZero ⟹ -273, true ⟹ #t
    ```
 - Abstract Example (use **Id** to range over identifiers = names):
    ```
    Id1 ⟹ V1, Id2 ⟹ V2, ..., Idn ⟹ Vn
    ```
 - Empty environment: ∅
- An environment serves as a context for evaluating expressions that contain identifiers.
- ``Second argument” to evaluation, which takes both an expression and an environment.

Addition: evaluation with environment

Syntax: (+ E1 E2)

Evaluation rule:
1. evaluate **E1 in the current environment** to a value **V1**
2. Evaluate **E2 in the current environment** to a value **V2**
3. If **V1** and **V2** are both numbers then return the arithmetic sum of **V1 + V2**.
4. Otherwise, a **type error** occurs.

Variable references

Syntax: **Id**

Id: any identifier

Evaluation rule:
Look up and return the value to which **Id** is bound in the current environment.
- Look-up proceeds by searching from the most-recently added bindings to the least-recently added bindings (front to back in our representation)
- If **Id** is not bound in the current environment, evaluating it is “stuck” at an **unbound variable error**.

Examples:
- Suppose **env** is **num** ⟹ 17, **absZero** ⟹ -273, **true** ⟹ #t, **num** ⟹ 5
- In **env**, **num** evaluates to 17 (more recent than 5) **absZero** evaluates to -273, and **true** evaluates to #t. Any other name is stuck.
define Declarations

Syntax: `(define Id E)`
- `define`: keyword
- `Id`: any identifier
- `E`: any expression

This is a declaration, not an expression!

Evaluation rule:
1. Evaluate `E` to a value `V` **in the current environment**
2. Produce a new environment that is identical to the current environment, with the additional binding `Id → V` at the front. Use this new environment as the current environment going forward.

Environments: Example

```
env0 = ∅
(define x (+ 1 2))
  env1 = x ←→ 3, ∅ (abbreviated x → 3; can write as x -> 3, . in text)
(define y (* 4 x))
  env2 = y ←→ 12, x ←→ 3 (most recent binding first)
(define diff (- y x))
  env3 = diff ←→ 9, y ←→ 12, x ←→ 3
(define test (< x diff))
  env4 = test ←→ #t, diff ←→ 9, y ←→ 12, x ←→ 3

Environments:
env0 = ∅
env1 = x ←→ 3, ∅
env2 = y ←→ 12, x ←→ 3
env3 = diff ←→ 9, y ←→ 12, x ←→ 3
env4 = test ←→ #t, diff ←→ 9, y ←→ 12, x ←→ 3

Note that binding x ←→ 36 "shadows" x ←→ 3, making it inaccessible.
```

Evaluation Assertions & Rules with Environments

The evaluation assertion notation `E # env ↓ V` means
"Evaluating expression `E` in environment `env` yields value `V`".

Id # env ↓ V [varref]
- `Id` is an identifier and `id ←→ V` is the first binding in `env` for `Id` Only this rule actually uses `env`; others just pass it along.

V # env ↓ V [value]
- `V` is a value (number, boolean, etc.)

Example Derivation with Environments

Suppose `env4 = test ←→ #t, diff ←→ 9, y ←→ 12, x ←→ 3`

```
test # env4 ↓ #t (varref)
  x # env4 ↓ 3 (varref)
  5 # env4 ↓ 5 (value)
  (* x 5) # env4 ↓ 15 (multiplication)
  (if test (+ (* x 5) diff)) # env4 ↓ 24 (if nonfalse)
  (+ (* x 5) diff) # env4 ↓ 24 (if nonfalse)
```

Where `V1` and `V2` are numbers and `V` is the sum of `V1` and `V2`. Rules for other arithmetic and relational ops are similar.
Racket Identifiers

- Racket identifiers are case sensitive. The following are four different identifiers: ABC, Abc, aBc, abc

- Unlike most languages, Racket is very liberal with its definition of legal identifiers. Pretty much any character sequence is allowed as identifier with the following exceptions:
 - Can't contain whitespace
 - Can't contain special characters () [] { } ',' ';' # " \n - Can't have same syntax as a number

- This means variable names can use (and even begin with) digits and characters like !@$%^&*.-+_:<>?/
 - myLongName, my_long___name, my-long-name
 - is_a+b<c*d-e?
 - 76Trombones

- Why are other languages less liberal with legal identifiers?

Small-step vs. big-step semantics

The evaluation derivations we've seen so far are called a **big-step semantics** because the derivation $e \# \text{env2} \downarrow v$ explains the evaluation of e to v as one "big step" justified by the evaluation of its subexpressions.

An alternative way to express evaluation is a **small-step semantics** in which an expression is simplified to a value in a sequence of steps that simplifies subexpressions. You do this all the time when simplifying math expressions, and we can do it in Racket, too. E.g:

\[
\begin{align*}
(- (* (+ 2 3) 9) (/ 18 6)) \\
\Rightarrow (- (* 5 9) (/ 18 6)) \\
\Rightarrow (- 45 (/ 18 6)) \\
\Rightarrow (- 45 3) \\
\Rightarrow 42
\end{align*}
\]

Formalizing Definitions and Environments

This will be shown on the board in class if time allows.

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression that can be reduced to a value) and reduce it:

\[
\begin{align*}
(- (* (+ 2 3) 9) (/ 18 6)) \\
\Rightarrow (- (* 5 9) (/ 18 6)) \\
\Rightarrow (- 45 (/ 18 6)) \\
\Rightarrow (- 45 3) \\
\Rightarrow 42
\end{align*}
\]
Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be (particular kinds of) values in order to be applicable.

\[
\begin{align*}
 \text{Id} & \Rightarrow V, \text{ where Id} \mapsto V \text{ is the first binding for Id in the current environment}\ast \text{ [varref]}\\
 (+ V1 V2) & \Rightarrow V, \text{ where V is the sum of numbers V1 and V2 (addition)}
\end{align*}
\]

There are similar rules for other arithmetic/relation operators

\[
\begin{align*}
 (\text{if Vtest Ethen Eelse}) & \Rightarrow Ethen, \text{ if Vtest is not } \#f \text{ [if nonfalse]}\\
 (\text{if } \#f \text{ Ethen Eelse}) & \Rightarrow Efalse \text{ [if false]}
\end{align*}
\]

\ast \text{ In a more formal approach, the notation would make the environment explicit. E.g., } E \# env \Rightarrow V

Small-step semantics: conditional example

\[
\begin{align*}
 (+ (\text{if } (< 1 2) (* 3 4) (/ 5 6)) 7) & \Rightarrow (+ (\text{if } \#f (* 3 4) (/ 5 6)) 7) \\
 & \Rightarrow (+ (* 3 4) 7) \\
 & \Rightarrow (+ 12 7) \\
 & \Rightarrow 19
\end{align*}
\]

Small-step semantics: your turn

Use small-step semantics to evaluate the following expressions:

\[
\begin{align*}
 (\text{if } (< 8 2) (+ \#f 5) (+ 3 4)) \\
 (\text{if } (+ 1 2) (- 3 7) (/ 9 0)) \\
 (+ (\text{if } (< 1 2) (* 3 4) (/ 5 6)) 7) \\
 (+ (\text{if } 1 2 3) \#t)
\end{align*}
\]
Formalizing Definitions and Environments

\[
\begin{align*}
E_k & \# \ \text{env} \downarrow V_k \\
V_1 \ldots V_{k-1} & (\text{define } \text{Id}_k E_k) \ V_{k+1} \ldots V_n
\end{align*}
\]

Where \(\text{Vtest} \) is not \#f

[if nonfalse]