
Metaprogramming	

CS251	Programming	Languages	
Fall	2016,	Lyn	Turbak	
	

Department	of	Computer	Science	

Wellesley	College	

These	slides	borrow	heavily	from	Ben	Wood’s	Fall	‘15	slides.	

How	to	implement	a	programming	language	

InterpretaBon	
An	interpreter	wriDen	in	the	implementaBon	language	reads	
a	program	wriDen	in	the	source	language	and	evaluates	it.	

TranslaBon	(a.k.a.	compilaBon)	
An	translator	(a.k.a.	compiler)	wriDen	in	the	implementaBon	
language	reads	a	program	wriDen	in	the	source	language	and	
translates	it	to	an	equivalent	program	in	the	target	language.	
	

But	now	we	need	implementaBons	of:	
	implementaBon	language	
	target	language	

Metaprogramming 2

How	to	implement	a	programming	language	

Interpreter	Rule	
P-in-L	program 	L	interpreter	machine	

P	machine	
Translator	Rule	

P-in-S	program 	S-to-T	translator	machine	
P-in-T	program	

	

Can	describe	by	deriving	a	“proof”	of	the	implementaJon		

using	these	inference	rules:	

Metaprogramming 3

ImplementaBon	DerivaBon	Example	

	
Prove	how	to	implement	a	"251	web	page	machine"	using:	

•  251-web-page-in-HTML	program	(a	web	page	wriDen	in	HTML)	

•  HTML-interpreter-in-C	program	(a	web	browser	wriDen	in	C)	

•  C-to-x86-translator-in-x86	program	(a	C	compiler	wriDen	in	x86)	

•  x86	interpreter	machine	(an	x86	computer)	

	

No	peaking	ahead!	

Metaprogramming 4

ImplementaBon	DerivaBon	Example	SoluBon	

We	can	omit	some	occurrences	of	“program”	and	“machine”:		

Metaprogramming 5

ImplementaBon	DerivaBon	Are	Trees	
And	so	we	can	represent	them	as	nested	structures,	like	nested	bulleted	lists:		

251	web	page	machine	(I)	

q  251-web-page-in-HTML	program	

q  HTML	interpreter	machine	(I)	

²  HTML-interpreter-in-x86	program	(T)	

o  HTML-interpreter-in-C	program		

o  C-to-x86	compiler	machine	(I)	

•  C-to-x86	compiler-in-x86	program	

•  X86	computer	

²  x86	computer	

q  251-web-page-in-HTML	program	

o  HTML-interpreter-in-C	program		

•  C-to-x86	compiler-in-x86	program	

•  X86	computer	

o  C-to-x86	compiler	machine	(I)	

²  HTML-interpreter-in-x86	program	(T)	

²  x86	computer	

q  HTML	interpreter	machine	(I)	

251	web	page	machine	(I)	

Version	that	shows	

conclusions	below	bullets.	

More	similar	to	derivaJons	

with	horizontal	lines,	but	

harder	to	create,and	read	

Preferred	“top-down”		

version	that	shows	

conclusions	above	bullets.	

Metaprogramming 6

	
	
	
	
	
	
	
	

if (x == 0) {
 x = x + 1;
}
...

cmp (1000), $0
bne L
add (1000), $1
L:
...

C Source
Program C Compiler

x86 Target
Program

Compiler	

x86 Target
Program

x86 computer

Data

Output

Metaprogramming 7

Typical	Compiler	

Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Code Optimizer

Code Generator

Target
Program

Analysis	
	

Synthesis	

Metaprogramming 8

Interpreters	

Data

Output

Source
Program

Interpreter =

virtual machine

Metaprogramming 9

Interpreters	vs	Compilers	
Interpreters	

No	work	ahead	of	Jme	

Incremental	

maybe	inefficient	

	

Compilers	
All	work	ahead	of	Jme	

See	whole	program	(or	more	of	program)	

Time	and	resources	for	analysis	and	opJmizaJon	

	

Metaprogramming 10

Compilers...	whose	output	is	interpreted	

Target
Program Java

Virtual
Machine

Data

Output

Source
Program Java Compiler

Target
Program

Doesn’t	this	look	familiar?	 Metaprogramming 11

Java	Compiler	

if (x == 0) {
 x = x + 1;
}
...

load 0
ifne L
load 0
inc
store 0
L:
...

Source
Program Java Compiler

Target
Program

(compare compiled C to compiled Java) Metaprogramming 12

Interpreters...	that	use	compilers.	

Target
Program

Virtual
Machine

Data

Output

Source
Program Compiler

Metaprogramming 13

JIT	Compilers	and	OpBmizaBon	

Target
Program

Virtual

Machine
Data

Output

Just In Time
Compiler

Performance	

Monitor	

Source
Program

Compiler

•  HotSpot	JVM	

•  Jikes	RVM	

•  SpiderMonkey	

•  v8	
•  Transmeta	

•  ...	

Metaprogramming 14

Virtual	Machine	Model	

High-Level	Language	Program		

Virtual	Machine	Language	

Bytecode	

compiler	

Virtual	machine	

(interpreter)	

JIT	

compiler	

run	Bme	

compile	Bme	

Ahead-of-Jme	

compiler	

NaJve	Machine	Language	

Metaprogramming 15

Metacircularity	and	Bootstrapping	
Many	examples:	

•  Lisp	in	Lisp	/	Racket	in	Racket		

•  Python	in	Python:	PyPy	

•  Java	in	Java:	Jikes	RVM,	Maxine	VM	

•  …	

•  C-to-x86	compiler	in	C	

•  eval	construct	in	languages	like	Lisp,	JavaScript		

How	can	this	be	possible?		
	

Key	insights	to	bootstrapping:		
•  The	first	implementaJon	of	a	language	cannot	be	in	

itself,	but	must	be	in	some	other	language.	

•  Once	you	have	one	implementaJon	of	a	language,	you	

can	implement	it	in	itself.		
Metaprogramming 16

Suppose	you	are	given:		

•  Racket-interpreter-in-SML	program		

•  SML	machine	

•  Racket-interpreter-in-Racket	program	

How	do	you	create	a	Racket	interpreter	machine	using	the		

Racket-interpreter-in-Racket	program?	

Metacircularity	Example	1:	Problem	

Metaprogramming 17

Suppose	you	are	given:		

•  Racket-interpreter-in-SML	program		

•  SML	machine	

•  Racket-interpreter-in-Racket	program	

How	do	you	create	a	Racket	interpreter	machine	using	the		

Racket-interpreter-in-Racket	program?	

Racket	interpreter	machine	#2	(I)	

q Racket-interpreter-in-Racket	program		

q Racket-interpreter	machine	#1	(I)	

² Racket-interpreter-in-SML	program		

² SML	machine	

But	why	create	Racket	interpreter	machine	#2	when		

you	already	have	Racket-interpreter	machine	#1?	

Metacircularity	Example	1:	SoluBon	

Metaprogramming 18

Suppose	you	are	given:		

•  Racket-subset-interpreter-in-SML	program	(implements	

only	core	Racket	features;	no	desugaring	or	other	frills)	

•  SML	machine	

•  Full-Racket-interpreter-in-Racket	program		

How	do	you	create	a	Full-Racket	interpreter	machine	using	

the	Full-Racket-interpreter-in-Racket	program?	

Full-Racket	interpreter	machine	(I)	

q Racket-interpreter-in-Racket	program		

q Racket-subset	interpreter	machine	#1	(I)	

² Racket-subset-interpreter-in-SML	program		

² SML	machine	

Metacircularity	Example	1:	More	RealisBc	

Metaprogramming 19

Suppose	you	are	given:		

•  C-to-x86-translator-in-x86	program	(a	C	compiler	wriDen	in	x86)	

•  x86	interpreter	machine	(an	x86	computer)	

•  C-to-x86-translator-in-C-subset	program			

How	do	you	compile	the	C-to-x86-translator-in-C	?	

	

Metacircularity	Example	2:	Problem	

Metaprogramming 20

Suppose	you	are	given:		

•  C-to-x86-translator-in-x86	program	(a	C	compiler	wriDen	in	x86)	

•  x86	interpreter	machine	(an	x86	computer)	

•  C-to-x86-translator-in-C	program		

How	do	you	compile	the	C-to-x86-translator-in-C	?	

	

Metacircularity	Example	2:	SoluBon	

C-to-x86-translator	machine	#2	(I)	

q C-to-x86-translator-in-x86	program	#2	(T)	

² C-to-x86-translator-in-C		
² C-to-x86-translator	machine	#1	(I)	

o  C-to-x86-translator-in-x86	program	#1		

o  x86	computer	

q x86	computer	

But	why	create	C-to-x86-translator-in-x86	program	#2	(T)	

when	you	already	have	C-to-x86-translator-in-x86	program	#1?	
Metaprogramming 21

Suppose	you	are	given:		

•  C-subset-to-x86-translator-in-x86	program	

	(a	compiler	for	a	subset	of	C	wriDen	in	x86)	

•  x86	interpreter	machine	(an	x86	computer)	

•  Full-C-to-x86-translator-in-C-subset	program		

(a	compiler	for	the	full	C	language	wriDen	in	a	subset	of	C)		

How	do	you	create	a	Full-C-to-x86-translator	machine	?	

	

Metacircularity	Example	2:	More	RealisBc	

Full-C-to-x86-translator	machine	(I)	

q Full-C-to-x86-translator-in-x86	program	(T)	

² Full-C-to-x86-translator-in-C-subset		
² C-subset-to-x86-translator	machine	(I)	

o  C-subset-to-x86-translator-in-x86	program		

o  x86	computer	

q x86	computer	

Metaprogramming 22

A	long	line	of	C	compilers	
C-version_n-to-target_n-translator	machine	(I)	

q  C-version_n-to-target_n-translator	program	in	target_n-1	(T)	

²  C-version_n-to-target_n-translator	program	in	C-version_n-1		

²  C-version_n-1-to-target_n-1	translator	machine	(I)	

o  C-version_n-1-to-target_n_1-translator	program	in	target_n-2	(T)	

	
Ø  C-version_2-to-target_2-translator-program	in	target_1	(T)	

§  C-version_2-to-target_2-translator	program	in	C-version_1	

§  C-version_1-to-target_1	translator	(I)	

•  C-version_1-to-target_1-translator	program	in	assembly_0	

•  assembly_0	computer	

Ø  target_1	computer	

	

o  target_n-2	computer	

q  target_n-1	computer	

…
	

…
	

o  The	versions	of	C	and	target	languages	can	change	at	each	stage.	
o  Trojan	horses	from	earlier	source	files	can	remain	in	translator	machines	even	if		

they’re	not	in	later	source	file!	See	Ken	Thompson’s	Reflec4on	on	Trus4ng	Trust	
Metaprogramming 23

Remember:	language	!=	implementaBon	
•  Easy	to	confuse	"the	way	this	language	is	usually	

implemented"	or	"the	implementaJon	I	use"	with	"the	

language	itself.”	

	

•  Java	and	Racket	can	be	compiled	to	x86	

•  C	can	be	interpreted	in	Racket	

•  x86	can	be	compiled	to	JavaScript	

•  Can	we	compile	C/C++	to	Javascript?	

hDp://kripken.github.io/emscripten-site/	

Metaprogramming 24

More	Metaprogramming	in	SML	

•  We’ve	already	seen	PostFix	in	SML	

•  A	sequences	of	expression	languages	implemented	in	

SML	that	look	closer	and	closer	to	Racket:	

•  Intex	(Today	&	Tue	Dec.	6)	
•  Interpret	Intex	in	SML	

•  Compile	Intex	to	Posoix	

•  Bindex	(Tue/Wed.	Dec.	6/7)		

•  Valex	(won’t	cover	this	semester)	

•  HOFL	(higher-order	funcJonal	language;	
												won’t	cover	this	semester).	

Metaprogramming 25

