
Metaprogramming	

CS251	Programming	Languages	
Fall	2017,	Lyn	Turbak	
	
Department	of	Computer	Science	
Wellesley	College	

These	slides	borrow	heavily	from	Ben	Wood’s	Fall	‘15	slides.	

How	to	implement	a	programming	language	

InterpretaBon	
An	interpreter	wriDen	in	the	implementaBon	language	reads	
a	program	wriDen	in	the	source	language	and	evaluates	it.	

TranslaBon	(a.k.a.	compilaBon)	
An	translator	(a.k.a.	compiler)	wriDen	in	the	implementaBon	
language	reads	a	program	wriDen	in	the	source	language	and	
translates	it	to	an	equivalent	program	in	the	target	language.	
	

But	now	we	need	implementaBons	of:	
	implementaBon	language	
	target	language	

Metaprogramming 2

Metaprogramming:	InterpretaBon	

Interpreter		
for	language	L		
on	machine	M	

Machine	M	Program	in	
language	L		

Metaprogramming 3

Interpreters	

Data

Output

Source
Program

Interpreter =

virtual machine

Metaprogramming 4

Metaprogramming:	TranslaBon	

Interpreter		
for	language	B		
on	machine	M	

Machine	M	

Program	in	
language	A		 A	to	B	translator		

	

Program	in	
language	B	

Metaprogramming 5

	
	
	
	
	
	
	
	

if (x == 0) {
 x = x + 1;
}
...

cmp (1000), $0
bne L
add (1000), $1
L:
...

C Source
Program C Compiler

x86 Target
Program

Compiler	

x86 Target
Program

x86 computer

Data

Output

Metaprogramming 6

Thanks	to	Ben	Wood	for	these	
and	following	pictures	

Interpreters	vs	Compilers	

Interpreters	
No	work	ahead	of	Lme	
Incremental	
maybe	inefficient	
	

Compilers	
All	work	ahead	of	Lme	
See	whole	program	(or	more	of	program)	
Time	and	resources	for	analysis	and	opLmizaLon	
	

Metaprogramming 7

Java	Compiler	

if (x == 0) {
 x = x + 1;
}
...

load 0
ifne L
load 0
inc
store 0
L:
...

Source
Program Java Compiler

Target
Program

(compare compiled C to compiled Java) Metaprogramming 8

Compilers...	whose	output	is	interpreted	

Target
Program Java

Virtual
Machine

Data

Output

Source
Program Java Compiler

Target
Program

Doesn’t	this	look	familiar?	 Metaprogramming 9

Interpreters...	that	use	compilers.	

Target
Program

Virtual
Machine

Data

Output

Source
Program Compiler

Metaprogramming 10

JIT	Compilers	and	OpBmizaBon	

Target
Program

Virtual

Machine
Data

Output

Just In Time
Compiler

Performance	
Monitor	

Source
Program

Compiler

•  HotSpot	JVM	
•  Jikes	RVM	
•  SpiderMonkey	
•  v8	
•  Transmeta	
•  ...	

Metaprogramming 11

Virtual	Machine	Model	

High-Level	Language	Program		

Virtual	Machine	Language	

Bytecode	
compiler	

Virtual	machine	
(interpreter)	

JIT	
compiler	

run	Bme	

compile	Bme	

Ahead-of-Lme	
compiler	

NaLve	Machine	Language	

Metaprogramming 12

Typical	Compiler	

Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Code Optimizer

Code Generator

Target
Program

Analysis	
	

Synthesis	

Metaprogramming 13

How	to	implement	a	programming	language	

Interpreter	Rule	
P-in-L	program 	L	interpreter	machine	

P	machine	
Translator	Rule	

P-in-S	program 	S-to-T	translator	machine	
P-in-T	program	

	

Can	describe	by	deriving	a	“proof”	of	the	implementaLon		
using	these	inference	rules:	

Metaprogramming 14

ImplementaBon	DerivaBon	Example	

	
Prove	how	to	implement	a	"251	web	page	machine"	using:	

•  251-web-page-in-HTML	program	(a	web	page	wriDen	in	HTML)	
•  HTML-interpreter-in-C	program	(a	web	browser	wriDen	in	C)	
•  C-to-x86-translator-in-x86	program	(a	C	compiler	wriDen	in	x86)	
•  x86	interpreter	machine	(an	x86	computer)	
	

No	peaking	ahead!	

Metaprogramming 15

ImplementaBon	DerivaBon	Example	SoluBon	

We	can	omit	some	occurrences	of	“program”	and	“machine”:		

Metaprogramming 16

ImplementaBon	DerivaBon	Are	Trees	
And	so	we	can	represent	them	as	nested	structures,	like	nested	bulleted	lists:		

251	web	page	machine	(I)	
q  251-web-page-in-HTML	program	
q  HTML	interpreter	machine	(I)	

²  HTML-interpreter-in-x86	program	(T)	
o  HTML-interpreter-in-C	program		
o  C-to-x86	compiler	machine	(I)	

•  C-to-x86	compiler-in-x86	program	
•  X86	computer	

²  x86	computer	

q  251-web-page-in-HTML	program	
o  HTML-interpreter-in-C	program		

•  C-to-x86	compiler-in-x86	program	
•  X86	computer	

o  C-to-x86	compiler	machine	(I)	
²  HTML-interpreter-in-x86	program	(T)	
²  x86	computer	

q  HTML	interpreter	machine	(I)	
251	web	page	machine	(I)	

Version	that	shows	
conclusions	below	bullets.	
More	similar	to	derivaLons	
with	horizontal	lines,	but	
harder	to	create	and	read	

Preferred	“top-down”		
version	that	shows	
conclusions	above	bullets.	

Metaprogramming 17

Metaprogramming:	Bootstrapping	Puzzles	

How	can	we	write	a	Java-to-x86	compiler	in	Java?		

How	can	we	write	Scheme	interpreter	in	Scheme?		

Metaprogramming 18

Metacircularity	and	Bootstrapping	
Many	examples:	
•  Lisp	in	Lisp	/	Scheme	in	Scheme/Racket	in	Racket		
•  Python	in	Python:	PyPy	
•  Java	in	Java:	Jikes	RVM,	Maxine	VM	
•  …	
•  C-to-x86	compiler	in	C	
•  eval	construct	in	languages	like	Lisp,	JavaScript		

How	can	this	be	possible?		
	

Key	insights	to	bootstrapping:		
•  The	first	implementaLon	of	a	language	cannot	be	in	

itself,	but	must	be	in	some	other	language.	
•  Once	you	have	one	implementaLon	of	a	language,	you	

can	implement	it	in	itself.		
Metaprogramming 19

Suppose	you	are	given:		
•  Scheme-interpreter-in-Python	program		
•  Python	machine	
•  Scheme-interpreter-in-Scheme	program	
How	do	you	create	a	Scheme	interpreter	machine	using	the		
Scheme-interpreter-in-Scheme	program?	

Metacircularity	Example	1:	Problem	

Metaprogramming 20

Suppose	you	are	given:		
•  Scheme-interpreter-in-Python	program		
•  Python	machine	
•  Scheme-interpreter-in-Scheme	program	
How	do	you	create	a	Scheme	interpreter	machine	using	the		
Scheme-interpreter-in-Scheme	program?	

Scheme	interpreter	machine	#2	(I)	
q Scheme-interpreter-in-Scheme	program		
q Scheme-interpreter	machine	#1	(I)	

² Scheme-interpreter-in-Python	program		
² Python	machine	

But	why	create	Scheme	interpreter	machine	#2	when		
you	already	have	Scheme-interpreter	machine	#1?	

Metacircularity	Example	1:	SoluBon	

Metaprogramming 21

Suppose	you	are	given:		
•  Scheme-subset-interpreter-in-Python	program	(implements	

only	core	Scheme	features;	no	desugaring	or	other	frills)	
•  Python	machine	
•  Full-Scheme-interpreter-in-Scheme	program		
How	do	you	create	a	Full-Scheme	interpreter	machine	using	the	
Full-Scheme-interpreter-in-Scheme	program?	

Full-Scheme	interpreter	machine	(I)	
q Scheme-interpreter-in-Scheme	program		
q Scheme-subset	interpreter	machine	#1	(I)	

² Scheme-subset-interpreter-in-Python	program		
² Python	machine	

Metacircularity	Example	1:	More	RealisBc	

Metaprogramming 22

Suppose	you	are	given:		
•  C-to-x86-translator-in-x86	program	(a	C	compiler	wriDen	in	x86)	
•  x86	interpreter	machine	(an	x86	computer)	
•  C-to-x86-translator-in-C-subset	program			

How	do	you	compile	the	C-to-x86-translator-in-C	?	
	

Metacircularity	Example	2:	Problem	

Metaprogramming 23

Suppose	you	are	given:		
•  C-to-x86-translator-in-x86	program	(a	C	compiler	wriDen	in	x86)	
•  x86	interpreter	machine	(an	x86	computer)	
•  C-to-x86-translator-in-C	program		

How	do	you	compile	the	C-to-x86-translator-in-C	?	
	

Metacircularity	Example	2:	SoluBon	

C-to-x86-translator	machine	#2	(I)	
q C-to-x86-translator-in-x86	program	#2	(T)	

² C-to-x86-translator-in-C		
² C-to-x86-translator	machine	#1	(I)	

o  C-to-x86-translator-in-x86	program	#1		
o  x86	computer	

q x86	computer	

But	why	create	C-to-x86-translator-in-x86	program	#2	(T)	
when	you	already	have	C-to-x86-translator-in-x86	program	#1?	

Metaprogramming 24

Suppose	you	are	given:		
•  C-subset-to-x86-translator-in-x86	program	

	(a	compiler	for	a	subset	of	C	wriDen	in	x86)	
•  x86	interpreter	machine	(an	x86	computer)	
•  Full-C-to-x86-translator-in-C-subset	program		

(a	compiler	for	the	full	C	language	wriDen	in	a	subset	of	C)		

How	do	you	create	a	Full-C-to-x86-translator	machine	?	
	

Metacircularity	Example	2:	More	RealisBc	

Full-C-to-x86-translator	machine	(I)	
q Full-C-to-x86-translator-in-x86	program	(T)	

² Full-C-to-x86-translator-in-C-subset		
² C-subset-to-x86-translator	machine	(I)	

o  C-subset-to-x86-translator-in-x86	program		
o  x86	computer	

q x86	computer	
Metaprogramming 25

A	long	line	of	C	compilers	
C-version_n-to-target_n-translator	machine	(I)	
q  C-version_n-to-target_n-translator	program	in	target_n-1	(T)	

²  C-version_n-to-target_n-translator	program	in	C-version_n-1		
²  C-version_n-1-to-target_n-1	translator	machine	(I)	

o  C-version_n-1-to-target_n_1-translator	program	in	target_n-2	(T)	

	
Ø  C-version_2-to-target_2-translator-program	in	target_1	(T)	

§  C-version_2-to-target_2-translator	program	in	C-version_1	
§  C-version_1-to-target_1	translator	machine	(I)	

•  C-version_1-to-target_1-translator	program	in	assembly_0	
•  assembly_0	computer	

Ø  target_1	computer	
	

o  target_n-2	computer	
q  target_n-1	computer	

…
	

…
	

o  The	versions	of	C	and	target	languages	can	change	at	each	stage.	
o  Trojan	horses	from	earlier	source	files	can	remain	in	translator	machines	even	if		

they’re	not	in	later	source	file!	See	Ken	Thompson’s	Reflec4on	on	Trus4ng	Trust	
Metaprogramming 26

More	Metaprogramming	in	SML	

•  We’ve	already	seen	PostFix	and	Intex	SML	
•  A	sequences	of	expression	languages	implemented	in	
SML	that	look	closer	and	closer	to	Racket:	
•  Bindex:	add	naming	
•  Valex:	add	more	value	types,	dynamic	type	
checking,	desugaring	

•  HOFL:	first	class	funcLon	values,	closure	diagrams	

Metaprogramming 27

Remember:	language	!=	implementaBon	
•  Easy	to	confuse	"the	way	this	language	is	usually	

implemented"	or	"the	implementaLon	I	use"	with	"the	
language	itself.”	

	
•  Java	and	Racket	can	be	compiled	to	x86	

•  C	can	be	interpreted	in	Racket	

•  x86	can	be	compiled	to	JavaScript	

•  Can	we	compile	C/C++	to	Javascript?	
hDp://kripken.github.io/emscripten-site/	

Metaprogramming 28

