Higher-Order List Functions
in Racket

CS251 Programming
Languages
Fall 2018, Lyn Turbak

CAvyg aXS A0

ldgps *

7,
RIS
NG

Department of Computer Science
Wellesley College

Higher-order List Functions

A function is higher-order if it takes another
function as an input and/or returns another
function as a result. E.g. app-3-5,
make-linear-function, £1ip2 from the
previous lecture

We will now study higher-order list functions
that capture the recursive list processing
patterns we have seen.

Higher-order Liss Funs 2

Recall the List Mapping Pattern

(mapF (list vl v2 .. vn))

V1 VZ XX} vn — >0
F F F
(Fvi) (Fv2) (Fvn)
[XX] *H.

(define (mapF xs)
(1f (null? xs)
null
(cons (F (first xs))

(mapF (rest xs)))))

Higher-order Liss Funs 3

Express Mapping via Higher-order my-map

(define (my-map £ xs)
(1f (null? xs)
null
(cons (£ (first xs))
(my-map £ (rest xs)))))

Higher-order Liss Funs 4

my-map Examples yoin

> (my-map (A (x) (* 2 x)) '(7 2 4))
> (my-map first '((2 3) (4) (5 6 7)))
> (my-map (make-linear-function 4 7) '(0 1 2 3))

> (my-map app-3-5 (list sub2 + avg pow (flip2 pow)
make-linear-function))

Higher-order Liss Funs 5

map-scale gom

Define (map-scale n nums),which returns a list that
results from scaling each number in nums by n.

> (map-scale 3 '"(7 2 4))
'(21 6 12)

> (map-scale 6 (range 0 5))
'(0 6 12 18 24)

Higher-order Liss Funs 6

Currying Yol
A curried binary function takes one argument at a time.

(define (curry2 binop)
(A (x) (A (y) (binop x y)))

(define curried-mul (curry2 *)

> ((curried-mul 5) 4)

> (my-map (curried-mul 3) '(1 2 3))

> (my-map ((curry2 pow) 4) '(1 2 3)) Haskell Curry
> (my-map ((curry2 (flip2 pow)) 4) '(1 2 3))

> (define LOL '((2 3) (4) (5 6 7)))

> (my-map ((curry2 cons) 8) LOL)

> (my-map (8) LOL) ; fill in the blank
"((238) (48) (567 8)) Higher-order Liss Funs 7

Mapping with binary functions

(define (my-map2 binop xs ys)

(if (or (null? xs) (null? ys)) ; design decision:
; result has length of
; shorter list
null
(cons (binop (first xs) (first ys))

(my-map2 binop (rest xs) (rest ys))))))

> (my-map2 pow '(2 3 5) '(6 4 2))
'(64 81 25)

> (my-map2 cons '(2 3 5) '(6 4 2))
"((2 . 6) (3 . 4) (5. 2))

> (my-map2 + '(2 3 4 5) '(6 4 2))
(8 7 6)

Higher-order Liss Funs 8

Built-in Racket map Function
Maps over Any Number of Lists

> (map (A (x) (* x 2)) (range 1 5))
'(2 4 6 8)

> (map pow '(2 3 5) '(6 4 2))
'(64 81 25)

> (map (A (a b x) (+ (* a x) b)) Raqket mall(e.s different
(2 35) '(642) '(012)) design decision than my-
map2: generate error when
(6 7 12) lists have different length

> (map pow '(2 3 4 5) '"(6 4 2))

ERROR: map: all lists must have same size;
arguments were: #<procedure:pow> '(2 3 4 5) '(6 4 2)

Higher-order Liss Funs 9

Recall the List Filtering Pattern

(filterP (list vl v2 .. vn))

vl v2 eee vn —>0
/ | |
~| & ~
t\,l?/ : “\,,,/ : t\ P/‘
! |
#t #t X #t
v1 oo —siun| e

(define (filterP xs)
(if (null? xs)
null
(if (P (first xs))
(cons (first xs) (filterP (rest xs)))
(filterP (rest xs)))))

Higher-order Liss Funs 10

Express Filtering via Higher-ordermy-filter

(define (my-filter pred xs)
(if (null? xs)
null
(if (pred (first xs))
(cons (first xs)
(my-filter pred (rest xs)))
(my-filter pred (rest xs)))))

Built-in Racket £ilter function acts just likemy-filter

Higher-order Liss Funs 11

filter Examples yoin

(filter (A (x) (> x 0)) '"(7 -2 -4 8 5))

(filter (A (n) (= 0 (remainder n 2)))
'(7 -2 -4 8 5))

(filter (A (xs) (>= (len xs) 2))
'((2 3) (4) (56 7))

(filter number?
'(17 #t 3.141 "a"™ (1 2) 3/4 5+61i))

(filter (lambda (binop) (>= (app-3-5 binop)
(app-3-5 (flip2 binop))))
(list sub2 + * avg pow (flip2 pow)))

Higher-order Liss Funs 12

Recall the Recursive List Accumulation Pattern

(recf (list vl v2 .. vn))

vl v2 X X) vn N EEYY

[1

<«—combine)<—combine)«— ¢¢* <—(combine)<— nullval

(define (rec-accum xS)
(1f (null? xs)
nullval

(combine (first xs)
(rec—accum (rest xs)))))

Higher-order Liss Funs 13

Express Recursive List Accumulation via
Higher-order my-foldr

vl v2 LX) vn | >@

I] |

<—combine)<—combine)¢— <*** <—(combine)<— nullval

(define (my-foldr combine nullval vals)
(1f (null? wvals)
nullval
(combine (first wvals)
(my-foldr combine
nullval
(rest wvals)))))

Higher-order Liss Funs 14

my-foldr Examples yoin

> (my-foldr + 0 '"(7 2 4))

> (my-foldr * 1 '(7 2 4))

> (my-foldr - 0 '(7 2 4))

> (my-foldr min +inf.0 '(7 2 4))
> (my-foldr max -inf.0 '(7 2 4))
> (my-foldr cons '(8) '(7 2 4))

> (my-foldr append null ' ((2 3) (4) (5 6 7)))
Higher-order Liss Funs 15

More my-foldr Examples o

turn
> (my-foldr (A (a b) (and a b)) #t (list #t #t #t))

> (my-foldr (A (a b) (and a b)) #t (list #t #f #t))
> (my-foldr (A (a b) (or a b)) #f (list #t #f #t))
> (my-foldr (A (a b) (or a b)) #f (list #f #f #£f))

;7 This doesn’t work. Why not?
> (my-foldr and #t (list #t #t #t))

Higher-order Liss Funs 16

gou/b
Your turn: sumProdList turn
Define sumProdList (from scope lecture) in terms of foldr.
Is 1et necessary here like it was in scoping lecture?
(sumProdList '(5 2 4 3)) -> (14 120)
(sumProdList '()) -> (0 . 1) |
(define (sumProdList nums)
(foldr ; combiner

; nullval
nums))

Higher-order Liss Funs 17

Mapping & Filtering in terms of my-foldr yoir

(define (my-map f xs)
(my-foldr

Xs))

(define (my-filter pred xs)
(my-foldr

Xs))

’

’

4

’

it's

combiner

nullval

combiner

nullval

Higher-order Liss Funs 18

Built-in Racket foldr Function
Folds over Any Number of Lists

> (foldr + 0 "(7 2 4))
13
> (foldr (lambda (a b sum) (+ (* a b) sum))
0
'(2 3 4)
'(5 6 7))
56
> (foldr (lambda (a b sum) (+ (* a b) sum))
° Same design decision
(1234 as in map
'(5 6 7))
ERROR: foldr: given list does not have the same size
as the first list: '(5 6 7)

Higher-order Liss Funs 19

Problematic for foldr

(keepBiggerThanNext nums) returns a new list that keeps all nums that
are bigger than the following num. It never keeps the last num.

> (keepBiggerThanNext '(7 5 3 9 8))
'(7 5 9)

> (keepBiggerThanNext '(2 7 5 3 9 8))

'(759)

> (keepBiggerThanNext '(4 2 7 5 3 9 8))

'(4 7 5 9)

keepBiggerThanNext cannot be defined by fleshing out the following

template. Why not?

,,,,,,,

Higher-order Liss Funs 20

keepBiggerThanNext with foldr

keepBiggerThanNext needs (1) next number and (2) list result from below.
With foldr, we can provide both #1 and #2, and then return #2 at end

(define (keepBiggerThanNext nums)
(second
(foldr (A (thisNum nextNumé&subResult)
(let {[nextNum (first nextNumé&subResult)]

[subResult (second nextNumé&subResult)]}

(list thisNum ; becomes nextNum for elt to left
(1f (> thisNum nextNum)
(cons thisNum subResult) ; keep

subResult)))) ; don’t keep

(list +inf.0 '()) ; +inf.0 guarantees last num

; in nums won't be kept

nums)))

Higher-order Liss Funs 21

foldr-ternop: more info for combiner

In cases like keepBiggerThanNext, it helps for the combiner
to also take rest of list as an extra arg

(foldr-ternop ternop nullval (list vl v2 .. vn))

vl v2 cee vn |

1 I 1

arg #1 | arg #2

<«—(ternop @ eoe <—<—— nullval
arg #3

(define (foldr-ternop ternop nullval vals)
(if (null? wvals)

nullval

(ternop (first vals) ; arg #1
(rest vals) ; extra arg # 2 to ternop
; arg #3

(foldr-ternop ternop nullval (rest vals))))

Hicher-orderLiss Funs— 22

it's
keepBiggerThanNext with foldr-ternop gfﬂufb

(define (keepBiggerThanNext nums)
(foldr-ternop

; combiner

; nullval

nums))

> (keepBiggerThanNext '(4 2 7 5 3 9 8)
'(4 75 9)

Higher-order Liss Funs 23

