
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Concurrency
(and Parallelism)

Concurrency 1

Parallelism and Concurrency in 251

• Goal: encounter
– essence, key concerns
– non-sequential thinking
– some high-level models
– some mid-to-high-level mechanisms

• Non-goals:
– performance engineering / measurement
– deep programming proficiency
– exhaustive survey of models and mechanisms

Parallelism 2

Parallelism Concurrency

data / work

data = resources

workers = computations

workers = resources

divided among

share

Use more resources
to complete work faster.

Coordinate access
to shared resources.

Both can be expressed using a variety of primitives.
Concurrency 3

Concurrency via Concurrent ML

• Extends SML with language features for 
concurrency.

• Included in SML/NJ and Manticore
• Model:
– explicitly threaded
–message-passing over channels
– first-class events

Concurrency 4



Explicit threads: spawn
vs. Manticore's "hints" for implicit parallelism.

val spawn : (unit -> unit) -> thread_id

let fun f () = new thread's work…
val t2 = spawn f

in
this thread's work …

end

Concurrency 5

spawn f

new thread 
runs f

tim
e

Thread 1 Thread 2

thread 1 
continues

workload thunk

Another thread/task model: fork-join

Concurrency 6

fork
fork

fork

fork

join
join

join
join

fork : (unit -> 'a) -> 'a task

"call" a function in a new thread

join : 'a task -> 'a

wait for it to "return" a result

Mainly for explicit task parallelism,
not concurrency.

(CML's threads are similar, but cooperation is different.)

CML: How do threads cooperate?
val spawn : (unit -> unit) -> thread_id

Concurrency 7

How do we pass values in? How do we get results of work out?

workload thunk

let val data_in_env = …
fun closures_for_the_win x = …
val _ = spawn (fn () =>

map closures_for_the_win data_in_env)
in

…
end

✓

✓

CML: How do threads cooperate?
val spawn : (unit -> unit) -> thread_id

Threads communicate by passing messages 
through channels.

type ’a chan

val recv : ’a chan -> ’a 

val send : (’a chan * ’a) -> unit

Concurrency 8

How do we get results of work out?

workload thunk



Tiny channel example
val channel : unit -> ’a chan

let val ch : int chan = channel ()

fun inc () =

let val n = recv ch

val () = send (ch, n + 1)

in exit () end

in

spawn inc;

send (ch, 3);

…;

recv ch

end

Concurrency 9

Draw time diagram.

Concurrent streams
fun makeNatStream () =
let val ch = channel () 

fun count i = (
send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

fun sum stream 0 acc = acc
| sum stream n acc =
sum stream (n - 1) (acc + recv stream)

val nats = makeNatStream ()
val sumFirst2 = sum nats 2 0
val sumNext2 = sum nats 2 0

Concurrency 10

Draw time diagram.

A common pattern: looping thread

fun forever init f =

let
fun loop s = loop (f s) 

in
spawn (fn () => loop init);

()

end

Concurrency 11

Concurrent streams

fun makeNatStream () =

let

val ch = channel ()

in 

forever 0 (fn i => (

send (ch, i);

i + 1));

ch

end

Concurrency 12see cml-sieve.sml, cml-stream.sml



Ordering?
fun makeNatStream () =

let val ch = channel () 
fun count i = (

send (ch, i);
count (i + 1)

)
in 

spawn (fn () => count 0);
ch

end

val nats = makeNatStream ()
val _ =

spawn (fn () => print (Int.toString (recv nats)))
val _ = print (Int.toString (recv nats))

Concurrency 13

Draw time diagram.

Synchronousmessage-passing (CML)

! message-passing = handshake
receive blocks until a message is sent
send blocks until the message received

vs " asynchronous message-passing
receive blocks until a message has arrived
send can finish immediately without blocking

Concurrency 14

Synchronousmessage-passing (CML)

Concurrency 15

blocked until
another thread
receives on ch. recv ch

send (ch, 1)

send (ch, 0)

recv ch

blocked until
another thread
sends on ch.

Thread 1 Thread 2

tim
e

ch
!

ch
!

Asynchronousmessage-passing
(not CML)

Concurrency 16

send does not
block

recv ch

send (ch, 0)

blocked until
a thread first
sends on ch.

Thread 1 Thread 2

tim
e

send (ch, 0)

send (ch, 0)

" recv ch

"

recv ch

ch

ch



First-class events, combinators

Event constructors
val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event 

Event combinators
val sync : ’a event -> ’a

val choose : ’a event list -> ’a event 

val wrap : (’a event * (’a -> ’b)) -> ’b event 

val select = sync o choose

Concurrency 17

Utilities
val recv = sync o recvEvt
val send = sync o sendEvt

fun forever init f =
let
fun loop s = loop (f s) 

in
spawn (fn () => loop init);
() 

end 

Concurrency 18

Why combinators?
fun makeZipCh (inChA, inChB, outCh) =

forever () (fn () =>

let 

val (a, b) = select [
wrap (recvEvt inChA,

fn a => (a, recv inChB)),

wrap (recvEvt inChB,

fn b => (recv inChA, b)) 

] 

in 

send (outCh, (a, b))

end) 

Concurrency 19

Remember:
synchronous (blocking)
message-passing More CML

• Emulating mutable state via concurrency: 
cml-cell.sml

• Dataflow / pipeline computation
• Implement futures

Concurrency 20



Why avoid mutation?

• For parallelism?
• For concurrency?

Other models:
Shared-memory multithreading + synchronization
…

Concurrency 21

Shared-Memory Multithreading

pc pc pc

Unshared:
locals and
control

Shared:
heap and 
globals

Implicit communication through sharing.

Thread 1
t1 = bal
bal = t1 + 10

Thread 2
t2 = bal
bal = t2 - 10

t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1

Concurrency and Race Conditions

Thread 2int bal = 0;

bal == 0

Thread 1
t1 = bal
bal = t1 + 10

Thread 2
t2 = bal
bal = t2 - 10

t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1

Concurrency and Race Conditions

Thread 2int bal = 0;

bal == -10



Thread 1
synchronized(m) {

t1 = bal
bal = t1 + 10

}

Thread 2
synchronized(m) {

t2 = bal
bal = t2 - 10

}

acquire(m)

release(m)

t2 = bal

bal = t2 - 10

Thread 1

Concurrency and Race Conditions

Thread 2

t1 = bal

bal = t1 + 10

release(m)

acquire(m)

Lock m = new Lock();
int bal = 0;


