CS 251 Part 2: What's in a Type

Topics

• Standard ML basics
• Static type system: types and type-checking rules

Standard ML and Static Types

ML: Meta-Language for Theorem-Proving

Dana Scott, 1969

Logic of Computable Functions (LCF): for stating theorems about programs
Robin Milner, 1972

Logic for Computable Functions (LCF): automated theorem proving for LCF

Theorem proving is a hard search problem.

ML: Meta-Language for writing programs (tactics) to find proofs of theorems
(about other programs)

Proof Tactic: Partial function from formula to proof.

Guides proof search, resulting in one of:

• find and return proof
• never terminate
• report an error
Language Support for Tactics

Static type system
– guarantee correctness of generated proof

Exception handling
– deal with tactics that fail (Turing Award)
– make failure explicit, force programmer to deal with it

First-class/higher-order functions
– compose other tactics

Defining ML

• Focus on static types.
• New syntax.
• Highly familiar semantics
 – Formal definitions only for the new/different.
 – Some of our simplifications in defining Racket match SML perfectly.
• Move faster since we share some formal experience now.

An ML program is a sequence of bindings.

(* My first ML program *)
val x = 34
val y = 17
val z = (x + y) + (y + 2)
val q = z + 1
val abs_of_z = if z < 0 then 0 - z else z
val abs_of_z_simpler = abs z
(* comment: ML has (* nested comments! *) *)

Bindings, types, and environments

A program is a sequence of bindings.

Bindings build two environments:
– static environment maps variable to type before evaluation
– dynamic environment maps variable to value during evaluation

Type-check each binding in order:
– using static environment produced by previous bindings
– and extending it with a binding from variable to type

Evaluate each binding in order:
– using dynamic environment produced by previous bindings
– and extending it with a binding from variable to value
SML syntax starter

Bindings

\[b ::= \begin{align*}
& \text{val } x = e \\
& \text{fun } x \ (x : t) = e
\end{align*} \]

Types

\[t ::= \text{bool} \mid \text{int} \mid \text{real} \mid \text{string} \mid (t) \mid t \times t \mid t \rightarrow t \mid \ldots \]

Expressions: \[e ::= \ldots \]

Identifiers: \[x \]

Meta-syntax

Type environments

\[T ::= . \mid x : t, T \]

Type-checking judgments

Bindings:

\[T \vdash b : T' \]

Under static environment \(T \), binding \(b \) type-checks and produces extended static environment \(T' \).

Expressions:

\[T \vdash e : t \]

Under static environment \(T \), expression \(e \) type-checks with type \(t \).

Variable bindings

Syntax:

\[\text{val } x = e \quad \text{val } x = e; \]

Type checking:

\[T \vdash b : T' \]

If the expression, \(e \), type-checks with type \(t \) under the current static environment, \(T \), then the binding is well-typed and extends the static environment with typing \(x : t \).

Evaluation (only if it type-checks):

\[E \vdash b \downarrow E' \]

\[E \vdash e \downarrow v \quad \text{val } x = e \downarrow x \mapsto v, E \]

Expression type-checking rules

Value examples:

\[T \vdash 34 : \text{int} \quad T \vdash \sim 1 : \text{int} \]
\[T \vdash 3.14159 : \text{real} \]
\[T \vdash \text{true} : \text{bool} \quad T \vdash \text{false} : \text{bool} \]

Variables:

Under static environment \(T \), variable reference \(x \) type-checks with type \(t \) if the static environment maps \(x \) to \(t \).

\[T(x) = t \]

\[T \vdash x : t \]
Binary expression type-checking rules

Syntax:
- $e_1 + e_2$
- $e_1 < e_2$
- $e_1 = e_2$
- $e_1 <> e_2$

Type checking:
\[
T \vdash e : t
\]
- $T \vdash e_1 : \text{int}$
- $T \vdash e_2 : \text{int}$
\[
T \vdash e_1 + e_2 : \text{int}
\] (t-add)

- $T \vdash e_1 : t$
- $T \vdash e_2 : t$
\[
T \vdash e_1 = e_2 : \text{bool}
\] (t-eq)

- $T \vdash e_1 : \text{int}$
- $T \vdash e_2 : \text{int}$
\[
T \vdash e_1 < e_2 : \text{bool}
\] (t-less)

- $T \vdash e_1 : \text{int}$
- $T \vdash e_2 : \text{int}$
\[
T \vdash e_1 <> e_2 : \text{bool}
\] (t-ne)

(One more restriction later)

if expressions

Syntax:
- if e_1 then e_2 else e_3

Type checking:
\[
T \vdash e_1 : \text{bool}
\]
- $T \vdash e_2 : t$
- $T \vdash e_3 : t$
\[
T \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\] ([t-if])

Evaluation:
\[
E \vdash e \downarrow v
\]
- $E \vdash e_1 \downarrow \text{true}$
- $E \vdash e_2 \downarrow v_2$
\[
E \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \downarrow v_2
\] ([e-if-true])

- $E \vdash e_3 \downarrow \text{false}$
- $E \vdash e_3 \downarrow v_3$
\[
E \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \downarrow v_3
\] ([e-if-false])

ML static types and evaluation

Soundness
A program that type-checks never encounters a dynamic type error when evaluated.

Evaluation Rules
Same as our Racket evaluation rules (for ML syntax) except there is no dynamic type checking.

Function examples

(* Anonymous function expression *)
val double = fn (x : int) => x + x
val four = double (2)

(* Function binding *)
fun pow (x : int, y : int) =
 if y = 0
 then 1
 else x * pow (x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube (four)
valfortytwo =
 pow (2,2+2) + pow (4,2) + cube (2) + 2
Function type syntax

\[(t_1 \times \ldots \times t_n) \rightarrow t\]

A function that takes \(n\) arguments of types \(t_1 \ldots t_n\) and returns a result of type \(t\).

Anonymous function expressions

Syntax: \(\text{fn } (x_1 : t_1, \ldots, x_n : t_n) \Rightarrow e\)

Type checking: \(T \vdash e : t\)

If the function body, \(e\), type-checks with type \(t\), under the current static environment, \(T\), extended with the argument types, then the function type-checks with type \((t_1 \times \ldots \times t_n) \rightarrow t\) under the current static environment, \(T\).

Function bindings

Syntax: \(\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e\)

Type checking: \(T \vdash b \& T'\)

Otherwise equivalent to
\[\text{val } x_0 = \text{fn } (x_1 : t_1, \ldots, x_n : t_n) = e\]

Function application

Syntax: \(e_0 \ (e_1, \ldots, e_n)\)

Type checking:
\(T \vdash e : t\)
\(T \vdash e_0 : (t_1 \times \ldots \times t_n) \rightarrow t\)
\(T \vdash e_1 : t_1\)
\(\ldots\)
\(T \vdash e_n : t_n\)
\(T \vdash e_0 \ (e_1, \ldots, e_n) : t\)

(* Example *)
\[
\begin{align*}
\text{fun } \text{pow} \ (x : \text{int}, y : \text{int}) = \\
\text{if } y = 0 \\
\text{then } 1 \\
\text{else } x \times \text{pow} (x, y-1)
\end{align*}
\]
Function application

Syntax: \(e_0 (e_1, \ldots, e_n) \)

Evaluation:
1. Under the current dynamic environment, \(E \), evaluate \(e_0 \) to a function closure value \(\langle E', \text{fn}(x_1, \ldots, x_n) \Rightarrow e \rangle \).
 - **No dynamic type-checking:** Static type-checking guarantees \(e_0 \)'s result value will be a function closure taking parameters \(x_1, \ldots, x_n \) of types matching those of \(e_1, \ldots, e_n \).
2. Under the current dynamic environment, \(E \), evaluate argument expressions \(e_1, \ldots, e_n \) to values \(v_1, \ldots, v_n \).
3. The result is the result of evaluating the closure body, \(e \), under the closure environment, \(E' \), extended with argument bindings: \(x_1 \mapsto v_1, \ldots, x_n \mapsto v_n \).

Watch out

Odd error messages for function-argument syntax errors

* in type syntax is not arithmetic
 - Example: \(\text{int} \ast \text{int} \rightarrow \text{int} \)
 - In expressions, * is multiplication: \(x \ast \text{pow}(x, y-1) \)

Cannot refer to later function bindings
 - Helper functions must come before their uses
 - Special construct for mutual recursion (later)

let expressions

... **but**

Syntax: \(\text{let } b \text{ in } e \text{ end} \)

Type checking: \(T \vdash b : T' \) \(T' \vdash e : t \) \(T \vdash \text{let } b \text{ in } e \text{ end} : t \) \([t\text{-let}] \)

Evaluation: \(E \vdash e \downarrow v \) \(E' \vdash e \downarrow v \) \(E \vdash \text{let } b \text{ in } e \text{ end} \downarrow v \) \([e\text{-let}] \)
let is sugar

```
let val x = e1 in e2 end
```
desugars to:
```
((fn (x) => e2) e1)
```

(Rules [t-let] and [e-let] are not needed.)

Multi-binding let:
```
let b1 b2 ... bn in e end
```
desugars to:
```
let b1 in let b2 in ... let bn in e end ... end end
```

Like Racket's let*