WELLESLEY

A4

CS 251 Fall 2019
Principles of Programming Languages
Ben Wood

Structures, Signatures,
and Abstract Types

https://cs.wellesley.edu/~cs251/f19/

Abstract Types

1

Topics

Hiding implementation details is the most
important strategy
for writing correct, robust, reusable software.

ML structures and signatures.

Abstraction for robust library and
client+library code.

Abstraction for easy change.
ADTs and functions as data.

Abstract Types 2

Hiding with functions

procedural abstraction

Can you tell the difference?

fun double x = x*2
fun double x = x+x
- double 4; val y = 2
val it : int = 8 fun double x = x*y

fun double x =
let fun help 0 vy
| help x y
help (x-1) (y+1)
in help x x end

y

"Private", but can't be shared among functions.

Abstract Types

4

structure Name =
struct bindings end

structure (module)

namespace management and code organization

structure MyMathLib =
struct

fun fact 0

| fact x

1
x * fact (x-1)

val half pi = Math.pi / 2

fun doubler x = x * 2
end

outside:

val facts = List.map MyMathLib.fact [1,3,5,7,9]

Abstract Types 5

signature NAME =
sig binding-types end

signature

type for a structure (module)

List of bindings and their types:
variables, type synonyms, datatypes, exceptions

signature MATHLIB =
sig
val fact : int -> int
val half pi : real
val doubler : int -> int
end

Abstract Types 6

structure Name :> NAME =
struct bindings end

ascription

(opaque - will ignore other kinds)

Structure must have all bindings with types as declared in
signature.

signature MATHLIB =
sig

val fact : int -> int

val half pi : real

val doubler : int -> int
end

Real power:
Abstraction and Hiding

structure MyMathLib :> MATHLIB =
struct
fun fact 0 =1
| fact x = x * fact (x-1)
val half pi = Math.pi / 2
fun doubler x = x * 2
end Abstract Types 7

Hiding with signhatures

MyMathLib.doubler is unbound (not in environment)
outside module.

signature MATHLIB2 =

sig
val fact : int -> int
val half pi : real

end

structure MyMathLib2 :> MATHLIB2 =
struct
fun fact 0 =1
| fact x = x * fact (x-1)
val half pi = Math.pi / 2.0
fun doubler x = x * 2

end
Abstract Types 8

Abstract Data Type

type of data and operations on it

Example: rational numbers supporting add and toString

structure Rational =
struct
datatype rational = Whole of int
| Frac of int*int
exception BadFrac

fun make frac (x,y) = ...
fun add (rl,r2) = ...
fun toString r = ...

end

Abstract Types 9

Library spec and invariants

External properties [externally visible guarantees, up to library writer]
— Disallow O denominators

— Return strings in reduced form
(“4” not “4/1”, “3/2” not “9/6")
— No infinite loops or exceptions

Implementation invariants [not in external specification]
— All denominators > 0O
— All rational values returned from functions are reduced

Signatures help enforce internal invariants.

Abstract Types

10

More on invariants

Our code maintains (and relies) on invariants.

Maintain:

— make_ frac disallows O denominator, removes negative
denominator, and reduces result

— add assumes invariants on inputs, calls reduce if
needed

Rely:
— gcd assumes its arguments are non-negative
— add uses math properties to avoid calling reduce
— toString assumes its argument is in reduced form

Abstract Types 11

A first signature

Helper functions gcd and reduce not visible

outside module.

signature RATIONAL OPEN =
sig
datatype rational = Whole of int
| Frac of int*int

exception BadFrac
val make frac int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string
end

structure Rational :> RATIONAL OPEN = ...

Abstract Types

12

Problem: clients can violate invariants

Create values of type Rational.rational directly.

signature RATIONAL OPEN =
sig
datatype rational = Whole of int
| Frac of int*int

end

Rational.Frac(1,0)
Rational.Frac(3,~2)
Rational.Frac(9,6)

Abstract Types 13

Solution: hide more!

ADT must hide concrete type definition so clients

cannot create invariant-violating values of type.

Attempt #2

signature RATIONAL WRONG =
sig

exception BadFrac

val make frac : int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string
end

structure Rational :> RATIONAL_WRONG = ...

Too far: type rational is not known to exist!

Abstract Types 14

Abstract the type!

- - rClient can pass them around, but can
Type rational exists, manipulate them only through module.
but representation absolutely hidden.]
T
signaturejRATIONAL =
sig

type rational [Onlywayto make 1t rational.]
exception BadFrac

Success! (#3)

[OMyopmaﬁons val make frac <% int * int -> rational

on rational. val add : rational * rational -> rational
val toString : rational -> string
end

structure Rational :> RATIONAL = ...

Module controls all operations with rational,
so client cannot violate invariants.

Abstract Types 15

Abstract Data Type

Abstract type of data + operations on it

Outside of implementation:
* Values of type rational can be

created and manipulated only through ADT operations.
» Concrete representation of values of type rational

is absolutely hidden.

signature RATIONAL =
sig
type rational
exception BadFrac
val make frac : int * int -> rational

structure Rational :> RATIONAL = ...

val add : rational * rational -> rational
val toString : rational -> string
end

Abstract T|

ypes 16

Abstract Data Types: two key tools

Powerful ways to use signatures for hiding:

1. Deny bindings exist.
Especially val bindings, fun bindings, constructors.

2. Make types abstract.
Clients cannot create or inspect values of the type directly.

Abstract Types 17

A cute twist

Exposing the Whole constructor is no problem.

Expose it as a function:

— Still hiding the rest of the datatype
— Still does not allow using Whole as a pattern

signature RATIONAL WHOLE =
sig
type rational
exception BadFrac
val Whole : int -> rational
val make frac int * int -> rational

val add rational * rational -> rational
val toString rational -> string
end

Abstract Types

18

Signature matching rules

structure Struct :> SIG type-checks if and only if all
of the following hold:

1. Every non-abstract type in SIG is provided in Struct, as
specified

2. Every abstract type in SIG is provided in Struct in some way

3. Everyval-binding in SIG is provided in Struct, possibly with a
more general and/or less abstract internal type

4. Every exceptionin SIG is provided in Struct.

Struct can have more bindings (implicit in above rules)

Abstract Types

19

Allow different implementations to be
equivalent

A key purpose of abstraction:
— No client can tell which you are using
— Can improve/replace/choose implementations later
— Easier with more abstract signatures (reveal only what you must)

UnreducedRational in adts.sml.
— Same concrete datatype.
— Different invariant: reduce fractions only in toString.

— Equivalent under RATIONAL and RATIONAL_WHOLE,
but not under RATIONAL_OPEN.

PairRational in adts.sml.
— Different concrete datatype.
— Equivalent under RATIONAL and RATIONAL_WHOLE,
but cannot ascribe RATIONAL_OPEN.

Abstract Types

20

PairRational (alternative concrete type)

structure PairRational =
struct
type rational = int * int
exception BadFrac

fun make frac (x,y) = ..

fun Whole i = (i,1) (* for RATIONAL WHOLE *)

fun add ((a,b)(c,d)) = (a*d + b*c, b*d)

fun toString r = (* reduce at last minute *)
end

Abstract Types

21

Some interesting details

make frac
Internally: int * int -> int * int
Externally: int * int -> rational
* Client cannot tell if we return argument unchanged

Whole
Internally: 'a -=> 'a * int
Externally: int -> rational
* Specialize 'ato int
* abstract int * int torational
* Type-checker just figures it out
Cannot have types
'a -> int * int
'a -> rational

N
N

Abstract Types

Cannot mix and match module
bindings

Modules with the same signatures define different types.

These do not type-check:

Rational.toString(UnreducedRational.make frac(9,6))

PairRational.toString(UnreducedRational.make frac(9,6))

Crucial for type system and module properties:
— Different modules have different internal invariants!
... and different type definitions:

UnreducedRational.rational looks like
Rational.rational, but clients and type-checker do not know

PairRational.rational isint*int nota datatype!

Later: contrast with Object-Oriented techniques.

N
w

Abstract Types

Set ADT (set.sml)

(c idiom: if module provid
signature SET = ommon idiom: if module provides
si one externally visible type, name it t.

g O Then outside references are Set.t.
type at
val empty : ''at

Ia _> llat
''a list -> '"'a t

val singleton
val fromList

val toList : '"'at -> 'a list

val fromPred : (''a -> bool) -> ''a t

val toPred : '"'at -> "'a -> bool

val toString : (''a -> string) -> ''a t -> string

'"'a t -> bool
'"'a => '"'a t -> bool

val isEmpty
val member

val insert ''a -> '"'at -> "'at
val delete : ''a-> '"'at -> "'at
val union ''at > "'at->"'at
val intersect : ''at -> ''at -> '"'a t
val diff : ''at > '"'at->"'at
end Abstract Types |24

Implementing the SET sighature

ListSet structure
Represent sets as lists.

Invariants?
* Duplicates?
* Ordering?

FunSet structure
Represent sets as function closures (!!1)

Abstract Types 25

Sets are fun!
Math: { x

SML:

fn x

| x mod 3 = 0

}

=> x mod 3 0

structure FunSet
struct
type
val
fun
fun
fun

Vgt
empty = fn
singleton x

insert x set

end

''a =-> bool
_ => false

member x set =

> SET

fn y => x=y
set x
fn y => x=y orelse set y

Are all set operations possible?

Abstract Types 26

