
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Currying
and Partial Application

and other tasty closure recipes

1Currying and Partial Application

More idioms for closures

• Function composition

• Currying and partial application

• Callbacks (e.g., reactive programming, later)

• Functions as data representation (later)

2Currying and Partial Application

Function composition

Closure “remembers” f and g

: ('b -> 'c) * ('a -> 'b) -> ('a -> 'c)
REPL prints something equivalent

ML standard library provides infix operator o

Right to left.

3

fun compose (f,g) = fn x => f (g x)

fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i))
fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i
val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

Currying and Partial Application

Pipelines (left-to-right composition)

“Pipelines” of functions are common in
functional programming.

(F#, Microsoft's ML flavor, defines this by default)
4

infix |>
fun x |> f = f x

fun sqrt_of_abs i =
i |> abs |> Real.fromInt |> Math.sqrt

Currying and Partial Application

Currying
• Every ML function takes exactly one

argument

• Previously encoded n arguments via one
n-tuple

• Another way:
Take one argument and return a function
that takes another argument and…
– Called “currying” after logician Haskell Curry

6Currying and Partial Application

Example

• Calling (sorted3 7) returns a closure with:
– Code fn y => fn z => z >= y andalso y >= x
– Environment binds x to 7

• Calling that closure on 9 returns a closure with:
– Code fn z => z >= y andalso y >= x
– Environment binds x to 7, y to 9

• Calling that closure on 11 returns true

7

val sorted3 = fn x => fn y => fn z =>
z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

Currying and Partial Application

Function application is left-associative

e1 e2 e3 e4
means

(((e1 e2) e3) e4)

Callers can just think
“multi-argument function with spaces instead of a tuple expression”

Does not interchange with tupled version.

8

val sorted3 = fn x => fn y => fn z =>
z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

val t1 = sorted3 7 9 11

Currying and Partial Application

Function definitions are sugar (again)

fun f p1 p2 p3 … = e
desugars to

fun f p1 = fn p2 => fn p3 => … => e

Callees can just think
“multi-argument function with spaces instead of a tuple pattern”

Does not interchange with tupled version.

9

val sorted3 = fn x => fn y => fn z =>
z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

fun sorted3 x y z = z >= y andalso y >= x

Currying and Partial Application

Final version

As elegant syntactic sugar (fewer characters than tupling) for:

Function application is left-associative.

Types are right-associative:
sorted3 : int -> int -> int -> bool

means
sorted3 : int -> (int -> (int -> bool))

10

val sorted3 = fn x => fn y => fn z =>
z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

fun sorted3 x y z = z >= y andalso y >= x

val t1 = sorted3 7 9 11

Currying and Partial Application

Curried foldl

Currying and Partial Application 11

fun foldl f acc xs =
case xs of

[] => acc
| x::xs’ => foldl f (f(x,acc)) xs’

fun sum xs = foldl (fn (x,y) => x+y) 0 xs

Partial Application

foldl (fn (x,y) => x+y) 0
evaluates to a closure that, when called with a list xs, evaluates
the case-expression with:

f bound to the result of foldl (fn (x,y) => x+y)
acc bound to 0

12

fun foldl f acc xs =
case xs of

[] => acc
| x::xs’ => foldl f (f(acc,x)) xs’

fun sum_inferior xs = foldl (fn (x,y) => x+y) 0 xs

val sum = foldl (fn (x,y) => x+y) 0

Currying and Partial Application

Unnecessary function wrapping

13

fun f x = g x (* bad *)
val f = g (* good *)

(* bad *)
fun sum_inferior xs = fold (fn (x,y) => x+y) 0 xs

(* good *)
val sum = fold (fn (x,y) => x+y) 0

(* best? *)
val sum = fold (op+) 0

Treat infix operator
as normal function.

Currying and Partial Application

Iterators and partial application

For this reason, ML library functions of this form are
usually curried

– List.map, List.filter, List.foldl, ...
14

fun exists predicate xs =
case xs of

[] => false
| x::xs’ => predicate x

orelse exists predicate xs’

val no = exists (fn x => x=7) [4,11,23]
val hasZero = exists (fn x => x=0)

Currying and Partial Application

The Value Restriction L
If you use partial application to create a polymorphic function, it may
not work due to the value restriction

– Warning about “type vars not generalized”
• And won’t let you call the function

– This should surprise you; you did nothing wrong J
but you still must change your code.

– See the code for workarounds

– Can discuss a bit more when discussing type inference

15Currying and Partial Application

More combining functions
• What if you want to curry a tupled function or vice-versa?
• What if a function’s arguments are in the wrong order for the

partial application you want?

Naturally, it is easy to write higher-order wrapper functions
– And their types are neat logical formulas

16

fun other_curry1 f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry f x y = f (x,y)
fun uncurry f (x,y) = f x y

Currying and Partial Application

