
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Datatypes, Patterns,
and Parametric Polymorphism

1Datatypes, Patterns, and Parametric
Polymorphism

https://cs.wellesley.edu/~cs251/f19/

Topics

• Tuples and records
• Positional vs. nominal
• Datatypes
• Pattern matching
• Parametric polymorphic types (generics)
• Lists and options
• Equality types

Datatypes, Patterns, and Parametric
Polymorphism 2

Tuples

Syntax: (e1, …, en)

Evaluation:
1. Evaluate e1 to v1, …, and en to vn.
2. The result is (v1, …, vn)

Type checking:
If e1 has type t1, …, and en has type tn,
then the pair expression has type ta * … * tn

Datatypes, Patterns, and Parametric
Polymorphism 3

Tuple bindings
Syntax: val (x1, x2) = e

Type checking:
If e has type t1 * t2,
then #1 e has type t1 and #2 e has type t2

Evaluation:
1. Evaluate e to a pair of values (v1, v2) in the

current dynamic environment
2. Extend the current dynamic environment by

binding x1 to v1 and x2 to v2.

Datatypes, Patterns, and Parametric
Polymorphism 4

Tuple accessors

Syntax: #1 e #2 e

Type checking:
If e has type t1 * t2,
then #1 e has type t1 and #2 e has type t2

Evaluation:
1. Evaluate e to a pair of values v1 and v2 in the

current dynamic environment
2. The result v1 if using #1; v2 if using #2

Datatypes, Patterns, and Parametric
Polymorphism 5

Poor style.

Examples

Datatypes, Patterns, and Parametric
Polymorphism 6

fun swap (pr : int*bool) =
let val (x,y) = pr in (y,x) end

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
let val (x1,y1) = pr1

val (x2,y2) = pr2
in x1 + y1 + x2 + y2 end

fun div_mod (x : int, y : int) =
(x div y, x mod y)

fun sort_pair (pr : int*int) =
let val (x,y) = pr
in

if x < y then pr else (y,x)
end

Records
Record values have fields (any name) holding values

Record types have fields (any name) holding types

Order of fields in a record value or type never matters

Building records:

Accessing components:

(Evaluation rules and type-checking as expected)

Datatypes, Patterns, and Parametric
Polymorphism 7

{f1 = v1, …, fn = vn}

{f1 : t1, …, fn : tn}

{f1 = e1, …, fn = en}

#myfieldname e

Example

Has type

Evaluates to

If an expression, e.g. variable x, has this type, then get fields with:

No record type declarations!
– The same program could also make a

{id=true,ego=false} of type {id:bool,ego:bool}

Datatypes, Patterns, and Parametric
Polymorphism 8

{name = "Wendy", id = 41123 - 12}

{id = 41111, name = "Wendy"}

{id : int, name : string}

#id x #name x

By position vs. by name
(4,7,9) {f=4,g=7,h=9}

Common syntax decision

Common hybrid: function/method arguments

9

(nominal)(structural/positional)

Design Choice

Datatypes, Patterns, and Parametric
Polymorphism

Tuples are sugar
(e1,…,en)

desugars to
{1=e1,…,n=en}

t1*…*tn

desugars to
{1:t1,…,n:tn}

Records with contiguous fields 1...n printed like tuples
Can write {1=4,2=7,3=9}, bad style

10Datatypes, Patterns, and Parametric
Polymorphism

Lists
Racket: (cons 1 (cons 2 (cons 3 null)))

ML has a "no value" value written (), pronounced
"unit," with type unit

What is the type of: (1, (2, (3, ())))

What is the type of: (1, (2, (3, (4, ()))))

Why is this a problem?

Datatypes, Patterns, and Parametric
Polymorphism 11

How to build bigger data types

Data type building blocks in any language
– Product types (“Each of”):

Value contains values of each of t1 t2 … tn
Value contains a t1 and a t2 and … and a tn

– Sum types (“One of”):
Value contains values of one of t1 t2 … tn
Value is t1 xor a t2 xor … xor a tn

– Recursive types (“Self reference”):
A t value can refer to other t values

Datatypes, Patterns, and Parametric
Polymorphism 12

Datatype bindings

Algebraic Data Type
• Adds new type mytype to environment
• Adds constructors to environment: TwoInts, Str, Pizza
• Constructor: function that makes values of new type (or is a

value of new type):
– TwoInts : int * int -> mytype
– Str : string -> mytype
– Pizza : mytype

Datatypes, Patterns, and Parametric
Polymorphism 13

datatype mytype = TwoInts of int * int
| Str of string
| Pizza

Datatypes: constructing values

– Values of type mytype produced by one of the constructors
– Value contains:

− Tag: which constructor (e.g., TwoInts)
− Carried value (e.g., (7,9))

– Examples:
− TwoInts (3+4,5+4) evaluates to TwoInts (7,9)
− Str if true then “hi” else “bye”

evaluates to Str “hi”
− Pizza is a value

14Datatypes, Patterns, and Parametric
Polymorphism

datatype mytype = TwoInts of int * int
| Str of string
| Pizza

Datatypes: using values

1. Check what variant it is (what constructor made it)
2. Extract carried data (if that variant has any)

ML could create functions to get parts of datatype values
– Like to pair? or cdr in Racket
– Instead it does something much better...

15Datatypes, Patterns, and Parametric
Polymorphism

Pattern matching

Case expression and pattern-matching

All-in-one:
– Multi-branch conditional, picks branch based on variant.
– Extracts data and binds to branch-local variables.
– Type-check: all branches must have same type.

– Gets even better later. Datatypes, Patterns, and Parametric
Polymorphism 16

fun f x = (* f has type mytype -> int *)
case x of

Pizza => 3
| TwoInts(i1,i2) => i1+i2
| Str s => String.size s

Rad!!

Pattern matching

Syntax:

• (For now), each pattern pi is:
– a constructor name followed by the right number of variables:
– C or D x or E (x,y) or …

• Patterns are not expressions.
– We do not evaluate them.
– We match e0 against their structure.

• Precise type-checking/evaluation rules later...

17

case e0 of
p1 => e1

| p2 => e2
…

| pn => en

Datatypes, Patterns, and Parametric
Polymorphism

Pattern matching rocks.

1. Cannot forget a case
(inexhaustive pattern-match warning)

2. Cannot duplicate a case
(redundant pattern type-checking error)

3. Cannot forget to test the variant correctly
and get an error ((car null) in Racket)

4. It's much more general.
Supports elegant, concise code.

18Datatypes, Patterns, and Parametric
Polymorphism

Useful examples

Enumerations, carrying other data

Alternate ways of identifying real-world
things/people

19

datatype suit = Club | Diamond | Heart | Spade
datatype card_value = Jack | Queen | King

| Ace | Num of int

datatype id = StudentNum of int
| Name of string

* (string option)
* string

Datatypes, Patterns, and Parametric
Polymorphism

Lists!

A list is either:
– The empty list; or
– A pair of a list element and a list that holds the

rest of the list.

datatype mylist = Empty
| Cons of int * mylist

20

datatypes can be recursive

val some_ints = Cons (1, Cons (2, Cons (3, Empty)))

Datatypes, Patterns, and Parametric
Polymorphism

Accessing Lists

21

fun length (xs : mylist) =
case xs of

Empty => 0
| Cons (x, xs') => 1 + length xs'

val some_ints = Cons (1, Cons (2, Cons (3, Empty)))

fun sum (xs : mylist) =
case xs of

Empty => 0
| Cons (x, xs') => x + sum xs'

Datatypes, Patterns, and Parametric
Polymorphism

Syntactic sugar for lists: build

The empty list is a value: []

A list of expressions/values is an
expression/value:
[e1,e2,…,en] [v1,v2,…,vn]

If e1 evaluates to v
and e2 evaluates to a list [v1,…,vn],
then e1::e2 evaluates to [v,v1,…,vn]

22Datatypes, Patterns, and Parametric
Polymorphism

Syntactic sugar for lists: access

Datatypes, Patterns, and Parametric
Polymorphism 23

fun length (xs : int list) =
case xs of

[] => 0
| x::xs' => 1 + length xs'

val some_ints = [1,2,3]

fun sum (xs : int list) =
case xs of

[] => 0
| x::xs' => x + sum xs'

note the space between int and list

Type-checking list operations
For any type t, type t list describes lists where all
elements have type t

int list bool list int list list
(int * int) list (int list * int) list

[] : t list list for any type t
SML uses type 'a list to indicate this (“quote a” or “alpha”)

e1::e2 : t list if and only if:
– e1 : t and
– e2 : t list

More on 'a soon! (Nothing to do with 'a in Racket.)

Datatypes, Patterns, and Parametric
Polymorphism 24

Example list functions

25

fun countdown (x : int) =
if x=0
then []
else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
case xs of

[] => ys
| x::xs' => x :: append (xs', ys)

fun rev (xs : int list) =
let fun revtail (acc : int list, xs : int list) =

case xs of
[] => acc

| x::xs' => revtail (x :: acc, xs')
in

revtail ([], xs)
end

(types?)

Datatypes, Patterns, and Parametric
Polymorphism

Example higher-order list functions

• These examples only work on lists of ints.
• Should be more general: work on any list

– and any function for map...

26

fun map (f : int -> int, xs : int list) =
case xs of

[] => []
| x::xs' => f x :: map (f, xs')

(type?)

Datatypes, Patterns, and Parametric
Polymorphism

Polymorphic types + type inference

The identity function:
val id : int -> int

Omit the type:
val id : 'a -> 'a

General!
• 'a is a polymorphic type variable

stands in for any type
• "id takes an argument of any type and returns a

result of that same type."
Datatypes, Patterns, and Parametric

Polymorphism 27

fun id (x : int) = x

fun id x = x

Polymorphic types + type inference

fun swap pair =
let val (x,y) = pair in (y,x) end

val swap : ('a * 'b) -> ('b * 'a)

Works on any type of pair!

val pair = swap (4,"hello")
('a * 'b) is more general than (int * string).

Here, int instantiates 'a and string instantiates 'b.

28Datatypes, Patterns, and Parametric
Polymorphism

Polymorphic datatypes
Lists that can hold elements of any one type.

datatype 'a mylist = Empty
| Cons of 'a * 'a mylist

A list of "alphas" is either:
– the empty list; or
– a pair of an "alpha" and a list of "alphas"

datatype 'a list = []
| :: of 'a * 'a list

The type int list is an instantiation of the type 'a list, where
the type variable 'a is instantiated with int.

29Datatypes, Patterns, and Parametric
Polymorphism

Polymorphic list functions

30

fun append (xs, ys) =
case xs of

[] => ys
| x::xs' => x :: append (xs', ys)

fun rev (xs) =
let fun revtail (acc : int list, xs : int list) =

case xs of
[] => acc

| x::xs' => revtail (x :: acc, xs')
in revtail [] xs end

fun map (f, xs) =
case xs of

[] => []
| x::xs' => f x :: map (f, xs')

(types?)

Datatypes, Patterns, and Parametric
Polymorphism

Polymorphic list functions

• Type inference system chooses most general type.

• Polymorphic types show up commonly with higher-
order functions.

• Polymorphic function types often give you a good
idea of what the function does.

31

fun map (f, xs) =
case xs of

[] => []
| x::xs' => f x :: map (f, xs')

(type?)

Datatypes, Patterns, and Parametric
Polymorphism

Exceptions

An exception binding introduces a new kind of exception

The raise primitive raises (a.k.a. throws) an exception

A handle expression can handle (a.k.a. catch) an exception
– If doesn’t match, exception continues to propagate

32

exception MyFirstException
exception MySecondException of int * int

raise MyFirstException
raise (MySecondException (7,9))

e1 handle MyFirstException => e2
e3 handle MyFirstException => e4

| MySecondException (x,y) => e5

Datatypes, Patterns, and Parametric
Polymorphism

Actually…
Exceptions are a lot like datatype constructors…

• Declaring an exception adds a constructor for type exn

• Can pass values of exn anywhere (e.g., function
arguments)
– Not too common to do this but can be useful

• handle can have multiple branches with patterns for
type exn, just like a case expression.

• See examples in exnopt.sml

33Datatypes, Patterns, and Parametric
Polymorphism

Options

t option is a type for any type t

Building:
• NONE has type 'a option (much like [] has type 'a list)
• SOME e has type t option if e has type t (much like e::[])

Accessing:
• Pattern matching with case expression

Good style for functions that don't always have a meaningful result.
See examples in exnopt.sml

35

datatype 'a option = NONE | SOME of 'a

Datatypes, Patterns, and Parametric
Polymorphism

Parametric Polymorphism and the
power of what you cannot do.
Type 'a means "some type, but don't know what type"

What can a function of type 'a list -> int do?

'a -> 'a ?

Datatypes, Patterns, and Parametric
Polymorphism 37

fun f (xs : 'a list) : int = ...

fun g (x : 'a) : 'a = ...

Equality Types
So if we cannot inspect values of type 'a in any way,
how do we write a general contains function?

eqtypes (equality types):
Special category of types that support comparison.
Accompanying eqtype variables with double quotes

Mostly accurate:
= : (''a * ''a) -> bool

fun contains (xs : 'a list, x : 'a) : bool = ...

Special case of what should
be more general feature...

fun contains (xs : ''a list, x : ''a) : bool = ...
Datatypes, Patterns, and Parametric

Polymorphism 38

