
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Type Checking
and Type Inference

1Type Inference

Type checking
Static:

Can reject a program before it runs to prevent
possibility of some errors.

Dynamic:
Little/no static checking.
May try to treat a number as a function during
evaluation. Report error then.

Part of language definition,
not an implementation detail.

Type Inference 2

static types ≠ explicit types

3

fun f x = (* infer val f : int -> int *)
if x > 3
then 42
else x * 2

fun g x = (* report type error *)
if x > 3
then true
else x * 2

Type Inference

Type inference
Problem:

– Give every binding/expression a type such that type
checking succeeds.

– Fail if and only if no solution exists

Implementation:
– Could be a pass before type checker
– Often implemented in type checker

Easy, difficult, or impossible:
– Easy: Accept all programs
– Easy: Reject all programs
– Subtle, elegant, and not magic: ML

4Type Inference

Human type inference...

What is the type of x?
What is the type of f?

Describe your process.

Next:
• More examples, but:

– General algorithm is a slightly more advanced topic
– Supporting nested functions also a bit more advanced

• Enough to “do type inference in your head”
– And appreciate it is not magic

5

val x = 42

fun f (y, z, w) =
if y
then z + x
else 0

Type Inference

Key steps
1. Determine types of bindings in order
– Cannot use later bindings.

2. For each val or fun binding:
– Analyze definition for all necessary facts (constraints).

• Example: x > 0⇒ x : int
– Type error if no way for all facts to hold (over-constrained)

3. Use type variables ('a …) for any unconstrained types.
Inference and polymorphism are orthogonal; together = "sweet spot"

4. Enforce the value restriction, discussed later.

6Type Inference
See code examples in inf.sml.

7

0

x
z

+y

if then else

fun f =

val x : int = 42

(y, z, w)

val x = 42

fun f (y, z, w) =
if y
then z + x
else 0

Type Inference 8

fun f x =
let val (y,z) = x in

(abs y) + z
end

apply z

+
val =

let in end

fun f x =

(y, z) x

yabs

abs : int -> int

Type Inference

Problem: unsoundness!
Combine polymorphism and mutation:

• Assignment type-checks:
– (op:=) :'a ref * 'a -> unit
– instantiate string for 'a
– use as string ref * string -> unit

• Dereference type-checks:
– ! : 'a ref -> 'a
– instantiate int for 'a
– use as int ref -> int

• val i : int = "hi"
11Type Inference

val thing = ref NONE (* : 'a option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x

Solution
Reject at least one of these lines

Cannot just special-case ref types. Abstract types!

Type Inference 12

val thing = ref NONE (* : 'a option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x

signature HIDE = sig
type 'a hidden
val make : 'a -> 'a hidden
val thing : 'a hidden

end
structure Hide :> HIDE = struct

type 'a hidden = 'a ref
val make = ref
val thing = make NONE

end

The Value Restriction

A variable-binding can have a polymorphic type only if the
expression is a variable or value.

– Function calls like ref NONE are neither

Otherwise
Warning: type vars not generalized because of

value restriction are instantiated to dummy types
(Basically unusable)

Not obvious: suffices to make type system sound.

13Type Inference

val thing = ref NONE (* : ?.X1 option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x

Value Restriction downside

Causes problems when unnecessary (no mutation) because:

Type-checker does not know List.map is not making a
mutable ref.
Workarounds for partial application:

wrap in a function binding to keep it polymorphic

give up on polymorphism; write explicit non-polymorphic type

14

val pairWithOne = List.map (fn x => (x,1))
(* does not get type 'a list -> ('a*int) list *)

fun pairWithOne xs = List.map (fn x => (x,1)) xs
(* 'a list -> ('a*int) list *)

val pairWithOne : int list -> (int * int) list =
List.map (fn x => (x,1))

val pairWithOne = List.map (fn (x : int) => (x,1))
Type Inference

A local optimum

Despite the value restriction, ML type inference is
elegant and fairly easy to understand.

More difficult without polymorphism
– What type should length-of-list have?

More difficult with subtyping (later)
– Suppose pairs are supertypes of wider tuples
– Then val (y,z) = x constrains x to have at

least two fields, not exactly two fields.
– Sometimes languages can support this, but types

are often more difficult to infer and understand.
Type Inference 15

