Type Checking and Type Inference
Type checking

Static:
Can reject a program before it runs to prevent possibility of some errors.

Dynamic:
Little/no static checking.
May try to treat a number as a function during evaluation. Report error then.

Part of language definition, not an implementation detail.
static types ≠ explicit types

fun f x = (* infer val f : int \rightarrow int *)
 if x > 3
 then 42
 else x * 2

fun g x = (* report type error *)
 if x > 3
 then true
 else x * 2
Type inference

Problem:
- Give every binding/expression a type such that type checking succeeds.
- Fail if and only if no solution exists

Implementation:
- Could be a pass before type checker
- Often implemented in type checker

Easy, difficult, or impossible:
- Easy: Accept all programs
- Easy: Reject all programs
- Subtle, elegant, and not magic: ML
Human type inference...

What is the type of \(x \)?
What is the type of \(f \)?

Describe your process.

Next:
• More examples, but:
 – General algorithm is a slightly more advanced topic
 – Supporting nested functions also a bit more advanced

• Enough to “do type inference in your head”
 – And appreciate it is not magic

val \(x = 42 \)

fun \(f (y, z, w) = \)
 if \(y \)
 then \(z + x \)
 else 0
Key steps

1. Determine types of bindings in order
 – Cannot use later bindings.

2. For each `val` or `fun` binding:
 – Analyze definition for all necessary facts (constraints).
 • Example: `x > 0 ⇒ x : int`
 – Type error if no way for all facts to hold (over-constrained)

3. Use type variables (`'a ...`) for any unconstrained types.
 Inference and polymorphism are orthogonal; together = "sweet spot"

4. Enforce the `value restriction`, discussed later.

See code examples in `inf.sml`.
val \(x : \text{int} = 42 \)

fun \(f \) =
 if \(y \) then \(z + x \) else 0
fun f x = let val (y, z) = x in (abs y) + z end
Problem: unsoundness!

Combine polymorphism and mutation:

```haskell
val thing = ref NONE (* : 'a option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x
```

- **Assignment type-checks:**
 - \((\text{op:}=)\) : 'a ref * 'a -> unit
 - instantiate **string** for 'a
 - use as **string** ref * **string** -> unit
- **Dereference type-checks:**
 - \(!\) : 'a ref -> 'a
 - instantiate **int** for 'a
 - use as **int** ref -> **int**
- **val i : int = "hi"**
Solution

Reject at least one of these lines

```ocaml
val thing = ref NONE (* : 'a option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE ⇒ 0 | SOME x ⇒ x
```

Cannot just special-case ref types. Abstract types!

```ocaml
signature HIDE = sig
  type 'a hidden
  val make : 'a → 'a hidden
  val thing : 'a hidden
end
structure Hide :> HIDE = struct
  type 'a hidden = 'a ref
  val make = ref
  val thing = make NONE
end
```
The Value Restriction

A variable-binding can have a polymorphic type only if the expression is a variable or value.

- Function calls like `ref NONE` are neither

Otherwise

Warning: type vars not generalized because of value restriction are instantiated to dummy types (Basically unusable)

Not obvious: suffices to make type system sound.

```plaintext
val thing = ref NONE (* : ?.X1 option ref *)
val _ = thing := SOME "hi"
val i = 1 + case !thing of NONE => 0 | SOME x => x
```
Value Restriction downside

Causes problems when unnecessary (no mutation) because:

```haskell
val pairWithOne = List.map (fn x => (x,1))
 (* does not get type 'a list -> ('a*int) list *)
```

Type-checker does not know `List.map` is not making a mutable ref.

Workarounds for partial application:

- wrap in a function binding to keep it polymorphic

  ```haskell
  fun pairWithOne xs = List.map (fn x => (x,1)) xs
  (* 'a list -> ('a*int) list *)
  ```

- give up on polymorphism; write explicit non-polymorphic type

  ```haskell
  val pairWithOne : int list -> (int * int) list = List.map (fn x => (x,1))
  val pairWithOne = List.map (fn (x : int) => (x,1))
  ```
A local optimum

Despite the value restriction, ML type inference is elegant and fairly easy to understand.

More difficult without polymorphism

– What type should length-of-list have?

More difficult with subtyping (later)

– Suppose pairs are supertypes of wider tuples
– Then \(\text{val} (y, z) = x \) constrains \(x \) to have at least two fields, not exactly two fields.
– Sometimes languages can support this, but types are often more difficult to infer and understand.