
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ

https://cs.wellesley.edu/~cs251/f19/

Restricted Mutable State

1Restricted Mutable State

More idioms

• Pass functions with private data to iterators:
Done

• Combine functions (e.g., composition): Done

• Currying (multi-arg functions and partial
application): Done

• Callbacks (e.g., in reactive programming)

2Restricted Mutable State

ML has (restricted) mutation

• Mutable data structures are okay in some
situations
– When “update to state of world” is appropriate

model
– But want most language constructs truly immutable

• ML does this with a separate construct:
references

• Do not use references on your homework.

3Restricted Mutable State

References

• New types: t ref where t is a type

• New expressions:
– ref e to create a reference with initial contents

from result of e
– e1 := e2 to update contents
– !e to retrieve contents (not negation)

4Restricted Mutable State

References example

• A variable bound to a reference (e.g., x) is still immutable:
it will always refer to the same reference

• Contents of the reference may change via :=
• There may be aliases to the reference, which matter a lot
• References are first-class values
• Like a one-field mutable object. := and ! don’t specify field

5

val x = ref 42
val y = ref 42
val z = x
val _ = x := 43
val w = (!y) + (!z) (* 85 *)
(* x + 1 does not type-check *)

x z y

Restricted Mutable State

Callback idiom

Library takes function to apply later, when an event occurs.
Library interface:

val onKeyEvent : (int -> unit) -> unit

Other examples:
– When a key is pressed, mouse moves, data arrives
– When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
– Different callbacks need different private data with different

types
– Callback function’s type does not include the types of bindings in

its environment!

6Restricted Mutable State

Library implementation

8

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f :: (!cbs)

fun onEvent i =
let

fun loop fs =
case fs of

[] => ()
| f::fs’ => (f i; loop fs’)

in
loop (!cbs)

end

Create new ref cell
with initial contents []

Sequencing expression ;
Evaluate left side and throw away result,
then evaluate right side and use result.

Set contents of ref cell.

Get contents of ref cell.

Mutable state not absolutely necessary,
but is reasonably appropriate.

Restricted Mutable State

Clients
Closure’s environment captures any necessary context,
possibly including mutable state for "remembering" history.

9

val timesPressed = ref 0
val _ = onKeyEvent (fn _ =>

timesPressed := (!timesPressed) + 1)
fun printIfPressed i =

onKeyEvent (fn j =>
if i=j
then print ("pressed " ^ Int.toString i)
else ())

fun makeCounterCallback k =
let count = ref 0 in

onKeyEvent (fn i => if i=k
then count := !count + 1
else ());

count
end Restricted Mutable State

